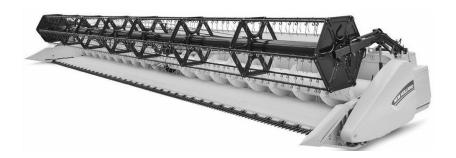
ФГБОУ ВО «Брянский государственный аграрный университет»


Инженерно-технологический институт

Кафедра технических систем в агробизнесе, природообустройстве и дорожном строительстве

Кузнецов В.В.

Определение основных параметров мотовила

Методическое пособие и рабочая тетрадь к практическому занятию по дисциплине «Сельскохозяйственные машины» для студентов ВУЗов очного и заочного обучения по направлению бакалавриат 35.03.06 «Агроинженерия», профиль образовательной программы «Технические системы в агробизнесе»

УДК 631.354.2.028 (076) ББК 40.728 К 89

Кузнецов, В. В. Определение основных параметров мотовила: методическое пособие и рабочая тетрадь / В. В. Кузнецов. - Брянск: Изд-во Брянский ГАУ, 2018. — 16 с.

Методическое пособие в форме рабочей тетради к практическому занятию «Проектирование звена зубовой бороны» по дисциплине «Сельскохозяйственные машины» для студентов ВУЗов очного и заочного обучения по направлению бакалавриат 35.03.06 «Агроинженерия», профиль образовательной программы «Технические системы в агробизнесе» помогает студенту получить практические навыки по компетенциям ПК-2, ПК-4, ПК-5, ПК-8 рабочего плана дисциплины.

Рецензент: к.т.н., доцент С. И. Будко

Рекомендовано к изданию методической комиссией инженерно-технологического института от 21.02.2018 года, протокол №7.

[©] Кузнецов В.В., 2018

[©] Брянская ГАУ, 2018

Определение основных параметров мотовила

Цель работы. Проанализировать исходные данные. Приобрести навыки исследования процесса совместного взаимодействия со срезаемыми растениями. Исследовать зависимость показателей работы мотовила от его конструктивных и кинематических параметров. Обосновать диапазон регулировочных параметров. Исследовать качество технологического процесса работы мотовила и режущего аппарата и методы подготовки к профессиональной эксплуатации.

Теоретическая часть

Основная функция мотовила - подводить стебли к режущему аппарату в момент их среза и удерживать при срезе. Качество работы мотовила зависит в основном от следующих его параметров: окружной скорости конца планки, радиуса, установки центра мотовила по высоте, шага и выноса оси мотовила вперед относительно режущего аппарата. Выбор этих параметров определяется свойствами и состоянием стеблестоя.

Основным показателем оценки качества работы мотовила считают коэффициент воздействия мотовила на стебли (коэффициент полезного действия мотовила).

Окружная скорость мотовила должна быть выше поступательной скорости машины и определяется из формулы

$$U = \lambda V_{\scriptscriptstyle M} \tag{1}$$

где U- окружная скорость планки, м/с;

 V_M - скорость машины, м/с;

 λ - показатель кинематического режима мотовила.

Величина λ наиболее часто применяется в пределах 1,4... 1,9 и зависит от состояния стеблестоя и скорости машины. При увеличении скорости машины λ уменьшают.

Чтобы срезанные стебли не переваливались через планки мотовила вперед, последние должны, в момент среза, находится выше центра тяжести срезанной части стебля. Из этого условия радиус мотовила определяется по формуле:

$$R \le \frac{l_c^2}{1,6(1+l_{cp})(1-\frac{1}{\lambda})} \tag{2}$$

где l_{cp} - длина срезаемой части стебля, м;

 l_c - средняя длина растений на поле, м.

С целью обеспечения нормальной работы мотовила на стеблестое различной длины высота установки центра мотовила относительно режущего аппарата должна регулироваться в пределах от H_{min} до H_{max} , величина которых определяется по формулам

$$H_{\min} = l_{\min} - h_{\min} + \frac{R}{\lambda_{\max}}$$
 (3)

$$H_{\text{max}} = l_{\text{max}} - h_{\text{max}} + \frac{R}{\lambda_{\text{min}}} \tag{4}$$

где H - высота центра мотовила, м;

 l_{\min} и l_{\max} - минимальная и максимальная высота стеблестоя, м;

 h_{\min} и h_{\max} - минимальная и максимальная высота среза, м.

Величина перемещения оси мотовила по вертикали, которую должен обеспечивать регулировочный механизм, определяется как

$$H_p = H_{\text{max}} - H_{\text{min}} \tag{5}$$

Шагом планки мотовила называют путь машины за время поворота мотовила на угол между двумя соседними планками и определяют его по формуле

$$X_z = \frac{2\pi R}{\lambda z} \tag{6}$$

где z - число планок мотовила.

Степенью воздействия на стебли, или коэффициентом полезного действия мотовила, принято называть величину отношения количества стеблей, срезаемых при воздействии планки, к общему количеству стеблей, срезаемых ножом за то же время. Легко показать, что этот коэффициент равен отношению ширины ΔX полосы стеблей, которые срезает нож при воздействии одной планки, к шагу планки мотовила, т. е.

$$\eta_1 = \frac{\Delta X}{X_7} \tag{7}$$

На редком прямостоящем стеблестое ΔX равна теоретической ширине полосы стеблей, захватываемых одной планкой. При густом и длинном стеблестое $\sigma_1^{'} > \sigma_1$ за счет взаимодействия стеблей, поэтому:

$$\sigma_1' = \sigma_1 \cdot \varepsilon \tag{8}$$

 $\mu \Delta X^{\prime} > \Delta X$

где ε - коэффициент, учитывающий взаимодействие стеблей (ε =1,0... 1,7).

Коэффициент воздействия мотовила на стебли повышается с увеличением выноса b мотовила вперед относительно режущего аппарата, однако это имеет место лишь до определенного значения b_{max} , после которого воздействие планок на стебли прекращается до подхода к ним режущего аппарата. С учетом вышеизложенного, коэффициент воздействия мотовила определяется по формулам

$$\eta_1' = \frac{\varepsilon \cdot z}{2\pi} \left(\arcsin \frac{1}{\lambda} + \sqrt{\lambda^2 - 1} - \frac{\pi}{2} + \lambda \frac{b}{R} - \arcsin \frac{b}{R} \right)$$
(9)

Если $b \neq 0$, то

$$\sigma_1^{"} = \frac{R}{\lambda} \left(\Delta \varphi_2 - \arcsin \frac{b}{R} \right)$$

$$\eta_1^{"} = \frac{z}{2\pi} \left(\Delta \varphi_2 - \arcsin \frac{b}{R} \right) \tag{10}$$

Примечание: при выполнении расчетов максимальное и минимального значения высоты стеблей, высоты установки ножа принять

$$l_{\text{max,min}} = l_c \pm (0.2 - 0.3), \text{ m};$$
 (11)

$$h_{\text{max,min}} = h_{cp} \pm 0.05$$
, M; (12)

$$\lambda_{\text{max,min}} = \lambda_{cp} \pm 0.2 \tag{13}$$

Практическая часть

Содержание работы. Исходя из заданных условий работы, определить основные параметры мотовила, построить траекторию планки мотовила и подсчитать показатели эффективности воздействия мотовила на стебли.

Исходные данные. Варианты исходных данных приведены в таблице 1, где l_c - средняя высота стеблестоя; h_{cp} - средняя высота среза; λ_{cp} - среднее значение отношения окружной скорости планки к скорости машины; z - количество планок мотовила и ε - коэффициент, учитывающий взаимодействие стеблей при их подводе к режущему аппарату.

Порядок выполнения работы

Используя формулу (1), определяют окружную скорость планки мотовила.

$$U =$$

Определяют радиус мотовила по выражению (2).

$$R \le \frac{l_c^2}{1,6(1+l_{cp})(1-\frac{1}{\lambda})} =$$

Расчетное значение радиуса округляют до сотых единиц в меньшую сторону.

Определяют пределы установки мотовила по высоте, используя формулы (3) и (4).

Таблица 1 - Исходные данные по вариантам

№	l_c ,	h_{cp} ,	$V_{\scriptscriptstyle M}$,	2	7	C	№	l_c ,	h_{cp} ,	$V_{\scriptscriptstyle M}$,	2	z	ε
п.п	M	M	_M /c	λ _{cp} ,	Z	ε	п.п	M	M	м/с	λ _{cp} ,	L	6
1	0,85	0,12	0,65	1,50	5	1,0	24	0,9	0,14	1,75	1,52	6	1,5
2	0,85	0,14	0,70	1,52	6	1,1	25	0,9	0,12	1,80	1,54	5	1,4
3	0,85	0,16	0,75	1,54	5	1,2	26	0,8	0,10	1,85	1,50	6	1,3
4	0,85	0,18	0,80	1,56	6	1,3	27	0,8	0,12	1,80	1,48	5	1,2
5	0,85	0,20	0,85	1,58	5	1,4	28	0,8	0,14	1,75	1,46	6	1,1
6	0,8	0,10	0,90	1,60	6	1,5	29	0,8	0,16	1,70	1,42	5	1,0
7	0,8	0,12	1,00	1,58	5	1,6	30	0,8	0,18	1,65	1,44	6	1,1
8	0,8	0,14	1,05	1,56	6	1,7	31	0,7	0,20	1,60	1,46	5	1,2
9	0,8	0,16	1,10	1,54	5	1,6	32	0,7	0,18	1,55	1,48	6	1,3
10	0,8	0,18	1,15	1,52	6	1,5	33	0,7	0,16	1,50	1,50	5	1,4
11	0,95	0,20	1,20	1,50	5	1,4	34	0,7	0,14	1,45	1,52	6	1,5
12	0,9	0,18	1,25	1,52	6	1,3	35	0,7	0,12	1,40	1,54	5	1,6
13	0,9	0,16	1,30	1,54	5	1,2	36	0,7	0,10	1,35	1,56	6	1,7
14	0,9	0,14	1,30	1,56	6	1Д	37	0,7	0,12	1,30	1,58	5	1,6
15	0,9	0,12	1,35	1,58	5	1,0	38	0,75	0,14	1,25	1,60	6	1,5
16	0,8	0,10	1,40	1,60	6	1,1	39	0,75	0,16	1,20	1,62	5	1,4
17	0,85	0,12	1,45	1,62	5	1,2	40	0,75	0,18	1,15	1,64	6	1,3
18	0,85	0,14	1,50	1,64	6	1,3	41	0,85	0,20	1,10	1,62	5	1,2
19	0,85	0,16	1,55	1,66	5	1,4	42	0,85	0,18	1,05	1,64	6	1,1
20	0,85	0,18	1,60	1,60	6	1,5	43	0,85	0,16	1,00	1,66	5	1,0
21	0,9	0,20	1,65	1,58	5	1,6	44	0,85	0,14	0,95	1,68	6	1,2
22	0,9	0,18	0,95	1,56	6	1,7	45	0,85	0,12	0,90	1,70	5	1,3
23	0,9	0,16	1,70	1,54	5	1,6	46	0,75	0,10	0,85	1,60	6	1,4

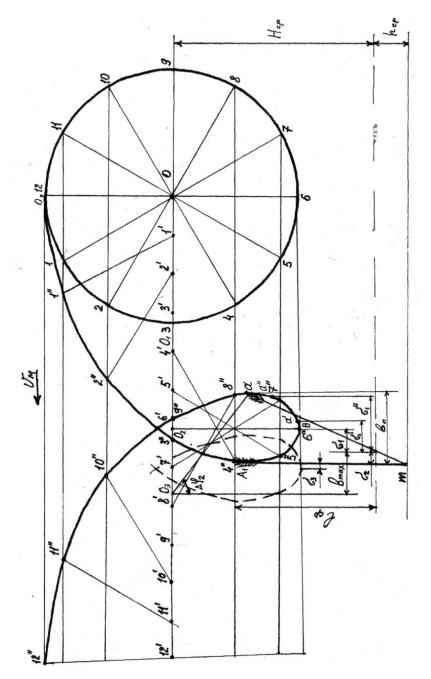


Рисунок 1 – Схема построения совместной работы мотовила и режущего аппарата

$$H_{\min} = l_{\min} - h_{\min} + \frac{R}{\lambda_{\max}} =$$

$$H_{\text{max}} = l_{\text{max}} - h_{\text{max}} + \frac{R}{\lambda_{\text{min}}} =$$

где
$$l_{min}=$$
 $l_{max}=$ $l_{max}=$ $h_{min}=$ $h_{max}=$ $\lambda_{\min}=\lambda_{cp}-0.2=$ $\lambda_{\max}=\lambda_{cp}+0.2=$

Величину хода регулировочного механизма определяют по формулам (5).

$$H_p = H_{\text{max}} - H_{\text{min}} =$$

Строят на координатной бумаге (формат А4) траекторию конца планки мотовила, для чего:

- в выбранном масштабе радиусом *R* проводят окружность (рис. 1) и делят ее на равные части (не менее 12). Полученные точки обозначают цифрами 0, 1, 2, 3, 4 и т. д. и соединяют их с центром окружности. В результате получают положения луча планки через равные промежутки времени;

- определяют время одного оборота мотовила по формуле

$$T = \frac{2\pi R}{U},\tag{14}$$

$$T =$$

- по формуле

$$X_T = \frac{2\pi R}{\lambda} \tag{15}$$

определяют путь машины за один оборот мотовила, в масштабе откладывают его от центра окружности и делятна столько же частей, что и окружность, пронумеровав полученные точки 1', 2', 3', 4' и т.д.;

$$X_{T} =$$

- из точек 0, 1, 2, 3 и т.д. проводят прямые линии, параллельные направлению движения машины, затем из точек 0', 1', 2' и т.д. радиусом Rделают засечки на соответствующих прямых, проведенных из точек 0, 1, 2, 3 и т.д.;
- полученные методом засечек точки нумеруют 0", 1", 2" и т.д., соединив их плавной кривой, которая будет представлять траекторию движения планки.

Определяют теоретическую ширину b_n полосы стеблей, захватываемых одной планкой, для чего:

- отмечают на петле траектории точку A_I , соответствующую положению конца планки в момент вхождения ее в хлебную массу (горизонтальная скорость планки в этот момент равна нулю);

- из точки A_I откладывают вниз вертикальный отрезок A_Im , равный в выбранном масштабе средней длине стеблей $l_{\rm c}$, и из нижней точки отрезка проводят горизонтальную линию, соответствующую поверхности поля, от которой откладывают в масштабе отрезок h_{cp} и проводят горизонтальную пунктирную линию, соответствующую уровню движения режущего аппарата над почвой;
- из точки m радиусом l_c проводят дугу и обозначают на второй ветви петли точку a, соответствующую выходу планки из стеблестоя. Соединяют точку m с точкой a, определив тем самым крайнее положение стебля в момент окончания воздействия на него планки;
- из точки a радиусом R делают засечку на линии движения центра мотовила, обозначив полученную точку O_3 и соединяют ее с точкой a. Отрезок aO_3 определяет положение радиуса в момент окончания среза;
- на полученной схеме с учетом масштаба определяют теоретическую ширину ΔX полосы стеблей, срезаемых при воздействии планки, и вынос b_{max} мотовила относительно режущего аппарата.

$$\Delta X = b_{max} =$$

Используя формулы 6 и 7, определяют коэффициент η_1 воздействия мотовила на стебли.

Вычисляют значение $\eta_{\rm l}^{\prime}$ по формуле (9) и $\eta_{\rm l}^{\prime\prime}$ по формуле (10).

$$\eta_1^{/} =$$

$$\eta_1^{\prime\prime} =$$

Содержание отчёта. Отчёт должен содержать:

- наименование, исходные данные, цель и содержание работы;
 - необходимые формулы и расчеты;
- траекторию движения планки мотовила и схему воздействия ее на стебли, вычерченную на координатной бумаге формата A4, аналогично рисунку 1.

Вь	іводы				

Задача № 1

Определите требуемый диапазон регулирования вала мотовила зерноуборочного комбайна СК-5 Нива по высоте, если средняя длина убираемых растений $l_{i\ cp}=0.85\ \text{м}$, средняя высота установки режущего аппарата $h_{icp}=0.12\ \text{m}$, угловая скорость мотовила $\omega=4.5\ \text{c}^{-1}$, средняя скорость движения комбайна $V_{\text{M}}=1.7\ \text{m/c}$.

Решение задачи №1

Задача № 2

Определить максимальную хорду петли, если радиус мотовила 700 мм, частота вращения мотовила 30 мин $^{-1}$, скорость машины v=7,2 км/ч.

Решение задачи №2

Контрольные вопросы

- 1. Какие функции выполняют планки мотовила.
- 2. Нарисуйте вид траекторий движения планки мотовила при $\lambda < 1, \ \lambda > 1$ и $\lambda = 1.$
- 3. Выведите с использованием схемы выражение для определения радиуса мотовила.
 - 4. Из каких соображений обосновывается радиус мотовила.
- 5. Укажите с использованием схемы, на каком участке траектории планка способна отклонять стебли навстречу режущему аппарату.
- 6. Обоснуйте с использованием схемы выражение для определения рациональной высоты установки мотовила.
- 7. Из каких соображений обосновывается высота установки мотовила.
 - 8. Покажите схематически границы участков $\sigma_1, \sigma_2, \sigma_3$.
- 9. Докажите, что коэффициент полезности мотовила всегда меньше единицы.
- 10. Охарактеризуйте влияние загущённости посевов и выноса мотовила на эффективность его работы.
- 11. Охарактеризуйте известные Вам кинематические схемы мотовила.
- 12. На какие виды потерь урожая влияют параметры и режимы работы мотовила.
- 13. Обоснуйте условие отсутствия опрокидывания срезанных стеблей через планку мотовила.

Список литературы

- 1. Кленин Н.И., Киселев С.Н. Сельскохозяйственные машины: учеб. для вузов. М.: КолосС, 2008.
- 2. Гаврилов К.Л. Тракторы и сельскохозяйственные машины иностранного и отечественного производства: устройство, диагностика и ремонт: учеб. пособие. Пермь: Звезда, 2010.
- 3. Халанский В.М., Горбачёв И.В. Сельскохозяйственные машины: учеб. для вузов. СПб.: ООО Квадро, 2014.
- 4. Сельскохозяйственные машины. Технологические расчеты в примерах и задачах: учеб. пособие для вузов. СПб.: Проспект Науки, 2011.
- 5. Кузнецов В.В. Сельскохозяйственные машины. Сборник задач и тестов: учебное пособие. Брянск: Изд-во Брянский ГАУ, 2016. 100 с.
- 6. Кузнецов В.В. Сельскохозяйственные машины. Сборник лекций по дисциплине: методическое пособие. Ч. 1. Брянск: Изд.-во Брянский ГАУ, 2018. 145 с.

Вариант		
Работу выполнил:		
студент группы	-	
Работу принял:	Лата	

Учебное издание

Владимир Васильевич Кузнецов

Определение основных параметров мотовила

МЕТОДИЧЕСКОЕ ПОСОБИЕ И РАБОЧАЯ ТЕТРАДЬ

Редактор Лебедева Е.М.

Подписано к печати 26.03.2018 г. Формат 60х84. 1/16. Бумага печатная Усл.п.л. 0,93. Тираж 25 экз. Изд. № 5614.