МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Брянский государственный аграрный университет»

Безик В.А., Шелоп М.А.

Актуальные вопросы современных систем электроснабжения

Методические указания по выполнению самостоятельной работы студентов направления 13.04.02 - Электроэнергетика и электротехника

УДК 621.31 (07) ББК 31.2 Б 39

Безик, В.А. **Актуальные вопросы современных систем электро-снабжения:** методические указания по выполнению самостоятельной работы студентов направления 13.04.02 - Электроэнергетика и электротехника / В. А. Безик, М. А. Шелоп. – Брянск: Изд-во Брянский ГАУ, 2017. – 31 с.

Методические указания содержат общие методические указания по выполнению самостоятельной работы, содержание работ, критерии оценки, вопросы для самопроверки, тестовые вопросы для проверки знаний. Предназначены для выполнения самостоятельной работы студентов направления 13.04.02 - Электроэнергетика и электротехника.

Рецензент:

д.т.н. профессор кафедры Электроэнергетики и автоматики Кисель Ю.Е. (ФГБОУ ВО Брянский ГАУ)

Рекомендовано к изданию решением методической комиссии института энергетики и природопользования Брянского ГАУ, протокол № 2 от 24.10.2017 года.

- © Брянский ГАУ, 2017
- © Безик В.А., 2017
- © Шелоп М.А., 2017

Содержание

1 Общие положения	4
2. Содержание самостоятельной работы	7
3. Перечень вопросов для самоподготовки	8
4. Темы рефератов	9
5. Критерии оценки знаний	10
6. Рекомендуемая литература	11
7. Тестовые задания для контроля знаний	12

1 Общие положения

Методические рекомендации по организации самостоятельной работы студентов (далее – **CPC**) являются **обязательной частью** учебно-методических комплексов учебных дисциплин, реализуемых в ФГБОУ ВО Брянский ГАУ по направлениям подготовки: 13.03.02 Электроэнергетика и электротехника, 15.03.04 Автоматизация технологических процессов и производств, 20.03.02 Природообустройство и водопользование, 21.03.02 Землеустройство и кадастры.

Цель методических рекомендаций СРС — определить роль и место самостоятельной работы студентов в учебном процессе; конкретизировать ее уровни, формы и виды; обобщить методы и приемы выполнения определенных типов учебных заданий; объяснить критерии оценивания.

Концепция модернизации российского образования определяет основные задачи профессионального образования. Во главу угла ставится подготовка квалифицированного работника соответствующего уровня и профиля, конкурентоспособного на рынке труда, компетентного, ответственного, свободно владеющего своей профессией и ориентированного в смежных областях деятельности, способного к эффективной работе по специальности на уровне мировых стандартов, готового к постоянному профессиональному росту, социальной и профессиональной мобильности.

Решение поставленных задач невозможно без повышения роли СРС в освоении учебного материала, усиления ответственности преподавателей за развитие навыков самостоятельной работы, за стимулирование профессионального роста студентов, воспитание творческой активности и инициативы.

Самостоятельная работа студентов — планируемая учебная, учебноисследовательская, научно-исследовательская работа студентов, выполняемая во внеаудиторное (аудиторное) время по заданию и при методическом руководстве преподавателя, но без его непосредственного участия (возможно частичное непосредственное участие преподавателя при сохранении ведущей роли студентов).

Целью СРС является овладение фундаментальными знаниями, профессиональными умениями и навыками по профилю будущей профессии, опытом творческой, исследовательской деятельности, развитие самостоятельности, ответственности и организованности, творческого подхода к решению проблем учебного и профессионального уровней.

Задачи СРС:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
- углубление и расширение теоретической подготовки;
- формирование умений использовать нормативную, правовую, справочную документацию и специальную литературу;
- развитие познавательных способностей и активности студентов: творческой

- инициативы, самостоятельности, ответственности и организованности;
- формирование самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развитие исследовательских умений;
- использование материала, собранного и полученного в ходе самостоятельных занятий на практических занятиях, при написании курсовых и выпускной квалификационной работ, для эффективной подготовки к итоговым зачетам и экзаменам.

Функции СРС:

- *развивающая* (повышение культуры умственного труда, приобщение к творческим видам деятельности, обогащение интеллектуальных способностей студентов);
- *информационно-обучающая* (учебная деятельность студентов на аудиторных занятиях, неподкрепленная самостоятельной работой, становится мало результативной);
- *ориентирующая и стимулирующая* (процессу обучения придается ускорение и мотивация);
- *воспитательная* (формируются и развиваются профессиональные качества специалиста и гражданина);
- исследовательская (новый уровень профессионально-творческого мышления).

СРС – важнейшая составная часть учебного процесса, обязательная для каждого студента, объем которой определяется учебным планом. Методологическую основу СРС составляет деятельностный подход, при котором цели обучения ориентированы на формирование умений решать типовые и нетиповые задачи, т. е. на реальные ситуации, в которых студентам надо проявить знание конкретной дисциплины, в частности, по высшей математике.

Предметно и содержательно СРС определяется Федеральными государственными образовательными стандартами, действующими учебными планами по образовательным программам различных форм обучения, рабочими программами учебных дисциплин, средствами обеспечения СРС: учебниками, учебными пособиями и методическими руководствами, учебно-программными комплексами и т.д.

Выбор учебных заданий определяется учебным планом по всем указанным направлениям подготовки. При этом учитывается количество часов, отведенных на контролируемую СРС (далее – КСР), и СРС, не предполагающую выделение дополнительных часов на осуществление контроля преподавателем.

Изучение дисциплины «Актуальные вопросы современных систем электроснабжения» направлено на формирование следующих компетенций:

ОПК-2 Способностью применять современные методы исследования, оценивать и представлять результаты выполненной работы

Знать: современные методы исследования.

Уметь: оценивать и представлять результаты выполненной работы.

Владеть: современными методами исследования, оценивая и представляя результаты выполненной работы.

ПК-4 способностью проводить поиск по источникам патентной информации, определять патентную чистоту разрабатываемых объектов техники, подготавливать первичные материалы к патентованию изобретений, регистрации программ для электронных вычислительных машин и баз данных

Знать: методы анализа и поиска по источникам патентной информации.

Уметь: применять методы анализа и поиска по источникам патентной информации.

Владеть: способностью применять на практике методы анализа и поиска по источникам патентной информации.

ПК-7 Способностью применять методы анализа вариантов, разработки и поиска компромиссных решений

Знать: методы анализа вариантов поиска компромиссных решений.

Уметь: применять методы анализа вариантов компромиссных решений.

Владеть: способностью применять методы анализа вариантов, разработки и поиска компромиссных решений.

ПК-15 Готовностью управлять программами освоения новой продукции и технологии

Знать: новые продукции и технологии.

Уметь: управлять программами освоения новой продукции и технологии.

Владеть: готовностью управлять программами освоения новой продукции и технологии.

В результате освоения дисциплины обучающийся должен

Знать:

- современные методы исследования;
- методы анализа вариантов поиска компромиссных решений;
- новые продукции и технологии.

Уметь:

- оценивать и представлять результаты выполненной работы;
- применять методы анализа вариантов компромиссных решений;
- управлять программами освоения новой продукции и технологии.

Владеть:

- современными методами исследования, оценивая и представляя результаты выполненной работы;
- способностью применять методы анализа вариантов, разработки и поиска компромиссных решений;
- способностью применять методы анализа вариантов, разработки и поиска компромиссных решений.

2. Содержание самостоятельной работы

№ п/п	Раздел дисциплины	Дидактические единицы (темы, вопросы)
	История развития систем электроснабжения	Основные понятия. История развития систем электроснабжения. Классификация. Основное законодательство в сфере энергетики. Классификация систем электроснабжения.
	Обзор и анализ современного состояния систем электроснабжения в России и мире.	Обзор и анализ современного состояния систем электро- снабжения в России и мире.
	Основные проблемы и страте- гические цели развития элек- троэнергетики России	Основные причины снижения экономической эффективности. Стратегические цели развития электроэнергетики России. Анализ этапов развития систем электроснабжения. Выявление основных недостатков, тенденций в развитии.
4	Исходные условия при разра- ботке стратегии и основные результаты и положения раз- вития генерирующих мощно- стей и электрических сетей	Исходные условия при разработке стратегии. Основные результаты и положения развития генерирующих мощностей. Основные результаты и положения развития электрических сетей.
· `		Инвестиционные потребности и прогноз цен на электро- энергию. Совершенствование структуры управления. Обеспечение надежности системы электроснабжения России.
	Современные направления развития энергетики, понятие новейшей энергетики.	Современные направления развития энергетики, понятие новейшей энергетики. Технологии новейшего электроснабжения. Инженерное обеспечение новейших систем электроснабжения. Технологии производства, транспорта, потребления (преобразования) электроэнергии. Инженерное обеспечение проектирования, строительства и эксплуатации новейших систем электроснабжения. Здания, сооружения для размещения электрооборудования новейших систем электрооборудования

3. Перечень вопросов для самоподготовки

- 1. История развития систем электроснабжения.
- 2. Основное законодательство в сфере энергетики.
- 3. Классификация систем электроснабжения.
- 4. Основное законодательство в сфере энергетики.
- 5. Обзор и анализ современного состояния систем электроснабжения в России и мире.
- 6. Обзор и анализ современного состояния систем электроснабжения в России и мире.
 - 7. Основные причины снижения экономической эффективности.
 - 8. Стратегические цели развития электроэнергетики России.
 - 9. Анализ этапов развития систем электроснабжения.
 - 10. Выявление основных недостатков, тенденций в развитии.
- 11. Стратегии развития национальных электрических сетей, систем электроснабжения.
 - 12. Глобальные (планетарные проекты).
 - 13. Новейшая энергетика.
 - 14. Исходные условия при разработке стратегии.
 - 15. Основные результаты и положения развития генерирующих мощностей.
 - 16. Основные результаты и положения развития электрических сетей.
 - 17. Характеристики систем электроснабжения.
 - 18. Инвестиционные потребности и прогноз цен на электроэнергию.
 - 19. Совершенствование структуры управления.
 - 20. Обеспечение надежности системы электроснабжения России.
 - 21. Технологии новейшего электроснабжения.
- 22. Современные направления развития энергетики, понятие новейшей энергетики.
 - 23. Технологии новейшего электроснабжения.
 - 24. Инженерное обеспечение новейших систем электроснабжения.
- 25. Технологии производства, транспорта, потребления (преобразования) электроэнергии.
 - 26. Инженерное обеспечение проектирования электроснабжения.
- 27. Инженерное обеспечение строительства и эксплуатации новейших систем электроснабжения.
- 28. Здания, сооружения для размещения электрооборудования новейших систем электроснабжения.
- 29. Перспективные конструкции сооружений для новейших систем электроснабжения.
- 30. Районирование по условиям климата, требования к оборудованию в различных климатических условиях.

4. Темы рефератов:

- 1. Электроэнергетика будущего.
- 2. Опережающее проектирование в электроэнергетике.
- 3. Развитие электроэнергетики в современном мире.
- 4. Современное законодательство в сфере энергетики.
- 5. Современное электрооборудование и его производители.
- 6. Климатология электроснабжения
- 7. Эксплуатация, монтаж, ремонт электрооборудования
- 8. Влияние электромагнитных полей на людей
- 9. Источники и приемники помех.
- 10. Защита от электромагнитного поля
- 11. Источники и приемники электромагнитных помех
- 12. Электромагнитная обстановка на предприятиях
- 13. Электромагнитная обстановка на объектах электроэнергетики
- 14. Каналы передачи электромагнитных помех и способы их ослабления
- 15. Статическое электричество и защита от него
- 16. Устройства защиты от помех
- 17. Каналы передачи электромагнитных помех и способы их ослабления
- 18. Экранирование и фильтрация
- 19. Показатели качества электроэнергии в системах электроснабжения

5. Критерии оценки знаний

Оценка	Баллы	Требования к знаниям
		- Студент свободно справляется с решением практических за-
		дач, причем не затрудняется с решением при видоизменении за-
	15	даний, правильно обосновывает принятое решение, глубоко и
	13	прочно усвоил программный материал, исчерпывающе, последо-
		вательно, четко и логически стройно его излагает на экамене,
		умеет тесно увязывать теорию с практикой.
		- Студент свободно справляется с решением практических за-
	14	дач, причем не затрудняется с решением при видоизменении за-
«отлично»		даний, правильно обосновывает принятое решение, твердо знает
		материал, грамотно и по существу излагает его, не допуская су-
		щественных неточностей в ответе на вопросы.
	13	- Студент справляется с решением практических задач, причем не затрудняется с решением при видоизменении заданий, при
		этом при обосновании принятого решения могут встречаться не-
		значительные неточности, твердо знает материал, грамотно и по
		существу излагает его, не допуская существенных неточностей в
		ответе на вопросы.
		- Студент справляется с решением практических задач, однако
		видоизменение заданий могут вызвать некоторое затруднение,
		правильно обосновывает принятое решение, твердо знает мате-
		риал, грамотно и по существу излагает его, не допуская суще-
		ственных неточностей в ответе на вопросы.
	11	- Студент справляется с решением практических задач, однако
		видоизменение заданий могут вызвать некоторое затруднение,
		при этом при обосновании принятого решения могут встречаться
«хорошо»		незначительные неточности, твердо знает материал, грамотно и
		по существу излагает его, не допуская существенных неточно-
		стей в ответе на вопросы.
	10	- Студент справляется с решением практических задач, однако видоизменение заданий могут вызвать некоторое затруднение,
		при этом при обосновании принятого решения могут встречаться
		незначительные неточности, в основном знает материал, при
		этом могут встречаться незначительные неточности в ответе на
		вопросы.
		- Студент с трудом справляется с решением практических за-
	9	дач, теоретический материал при этом может грамотно изложить,
		не допуская существенных неточностей в ответе на вопросы.
		- Студент с большим трудом справляется с решением практи-
«удовлетво-	8	ческих задач, теоретический материал при этом может грамотно
рительно»		изложить, не допуская существенных неточностей в ответе на
		вопросы.
	7	- Студент с большим трудом справляется с решением практи-
		ческих задач, теоретический материал при этом излагается с су-
		щественными неточностями.
«неудовлетвор	0	- Студент не знает, как решать практические задачи, несмотря
ительно»		на некоторое знание теоретического материала.

6. Рекомендуемая литература

- 1. Кудрин Б.И. Электроснабжение промышленных предприятий: учеб. для вузов. М.: Интермет Инжиниринг, 2007.
- 2. Грунтович Н.В. Монтаж, наладка и эксплуатация электрооборудования. Минск; М.: Новое знание; Инфра-М, 2015. 271 с.
- 3. Хорольский В.Я. Эксплуатация систем электроснабжения: учеб. пособие. М.: Инфра-М, 2017. 288 с.
- 4. Фролов Ю.М., Шелякин В.П. Основы электроснабжения: учеб. пособие для вузов. СПб.: Лань, 2012. 480 с.
- 5. Фадеева Г.А., Федин В.Т. Проектирование распределительных электрических сетей: учеб. для втузов / под ред. В.Т. Федина. Минск: Высш. шк., 2009. 365 с.
 - 6. Полонский В.М. Энергосбережение. М.: АСВ, 2005.
 - 7. Лыкин А.В. Электрические системы и сети. М.: Логос, 2007.
- 8. Герасимнко А.А. Передача и распределение электрической энергии. Ростов н/Д: Феникс, 2006.
- 9. Ополева Г.Н. Схемы и подстанции электроснабжения. М.: Инфра- М, 2006.
- 10. Лещинская Т.Б. Электроснабжение сельского хозяйства. М.: КолосС, 2006.

7. Тестовые задания для контроля знаний

Развитие энергетики

- 1. Повышение технико-экономических показателей и развития теплоэнергетики происходит при:
 - А) энергосбережении систем производства;
 - В) оптимизации систем производства;
 - С) энергосбережении и оптимизации;
 - D) эффективности работы оборудования;
 - Е) рационального распределения энергоресурсов.
 - 2. В силовых процессах «полезная энергия» определяется по:
 - А) световому потоку ламп;
 - В) количеству теплоты, полученной потребителями или пользователями;
- С) рабочему моменту на валу двигателя, расходу энергии, необходимой в соответствии с теоретическим расчетом проведения заданных усилий;
 - D) расходу энергии, необходимой для проведения заданных условий;
- Е) теоретическому расходу энергии на нагрев, кипение, плавку, испарение материала и проведение эндотермических реакций.
- 3. Удельное потребление энергии в нашей стране в среднем выше, чем в развитых странах:
 - А) в 3-4 раза;
 - В) в 5-6 раз;
 - С) в 3-5 раз;
 - D) в 2 раза;
 - Е) в 4-5 раз.
 - 4. В системы электроснабжения предприятии входят:
 - А) электрические сети напряжением 0,4 кВ, 6 или 10 кВ;
 - В) понижающие трансформаторы и электродвигатели;
 - С) электропривод и осветительные комплексы;
- D) электрические сети напряжением 0,4 кB, 6 или 10 кВ и системы автоматизации;
 - Е) все перечисленное.
- 5. Прирост мирового потребления, ожидаемого в течение следующих нескольких десятилетий, составит:
 - A) 85 %;
 - B) 90 %;
 - C) 65 %;
 - D) 70 %;
 - E) 50 %.

- 6. В 1990 году на традиционную биомассу от всего количества возобновляемых энергоресурсов приходилось около:
 - A) 60 %;
 - B) 50 %;
 - C) 40 %;
 - D) 70 %;
 - E) 55 %.
- 7. Удельное потребление электроэнергии в расчете на одного жителя мира составляет:
 - А) 2500 кВт∙ч;
 - В) 1500 кВт·ч;
 - С) 2190 кВт∙ч;
 - D) 1190 кВт·ч;
 - Е) 3190 кВт·ч.
 - 8. Энергетическая цепочка это:
- А) поток энергии от добычи (производства) первичного энергоресурса до конечного использования энергии;
- В) движение энергоресурсов в энергохозяйстве в направлении от источников к потребляемой энергии;
- С) запас энергии, необходимые для реализации мер по экономии единицы энергии в год без нежелательного изменения количества или качества выпускаемой продукции;
- D) количество энергии, которая была потреблена при производстве продукции или выполнении работы;
- Е) количество энергии, сохраненная при производстве продукции или выполнении работы.
- 9. К активной экономии энергии применительно к действующим энергетическим и энергопотребляющим установкам относится:
- А) теплоизоляция, теплопроводность, запрограммированное управление отоплением и кондиционированием воздуха, регулирование нагрузки;
- В) запрограммированное управление отоплением и кондиционированием воздуха, регулирование нагрузки;
- С) теплоизоляция, теплопроводность, теплопередача, побочная термодинамическая эффективность;
- D) теплоизоляция, теплопроводность, теплопередача, побочная термодинамическая эффективность, энергоэкономическое здание;
- Е) запрограммированное управление отоплением и кондиционированием воздуха, регулирование нагрузки, возврат конденсата.
 - 10. Источники энергии должны обладать свойствами:
 - А) быть возобновляемыми;
 - В) экологически чистыми;

- С) не приводить к потере тепловой энергии в окружающую среду;
- D) быть возобновляемыми и экологически чистыми;
- Е) все перечисленное.
- 11. В системах освещения «полезная энергия» определяется по:
- А) световому потоку ламп;
- В) рабочему моменту на валу двигателя;
- С) расходу энергии, необходимой в соответствии с теоретическим расчетом проведения заданных усилий;
 - D) расходу энергии, необходимой для проведения заданных условий;
- Е) теоретическому расходу энергии на нагрев, кипение, плавку, испарение материала и проведение эндотермических реакций.
- 12. Удельное потребление энергии в нашей стране в среднем выше, чем в развитых странах:
 - А) в 3-4 раза;
 - В) в 5-6 раз;
 - С) в 3-5 раз;
 - D) в 2 раза;
 - Е) в 4-5 раз.
 - 13. Энергосбережение это:
 - А) сохранение на заданном уровне потребления энергии;
- В) уменьшение потребления топлива, тепловой и электрической энергии за счет их наиболее полного и рационального использования во всех сферах деятельности человека;
- С) уменьшение потребления топлива, тепловой и электрической энергии за счет их наиболее неполного и иррационального использования во всех сферах деятельности человека;
 - D) повышение выработки тепловой и электрической энергии любыми путями;
- Е) определение оптимальных расходов топливно-энергетических ресурсов для обеспечения потребителей тепловой и электрической энергией.
- 14. Запасов угля для обеспечения энергетической потребности в течение следующих нескольких десятилетий хватит на:
 - А) 100 лет;
 - В) 200 лет;
 - С) 250 лет;
 - D) 150 лет;
 - Е) 300 лет.
 - 15. В 1990 году «новые» возобновляемые источники энергии составляли:
 - A) 5 %;
 - B) 10 %;
 - C) 2 %;

- D) 3 %;
- E) 12 %.
- 16. Модель мировой экономики является средством анализа:
- А) перспектив мировой энергетики;
- В) перспектив мировой энергетики и влияния на окружающую среду использования энергетических ресурсов;
- С) перспектив мировой энергетики, влияния на окружающую среду использования энергетических ресурсов и политических мер или изменений технологий;
- D) влияния на окружающую среду использования энергетических ресурсов и политических мер или изменений технологий;
- E) перспектив мировой энергетики, влияния на окружающую среду использования вторичных, альтернативных энергетических ресурсов и политических мер или изменений технологий.
 - 17. Источники энергии должны обладать свойствами:
 - А) быть возобновляемыми;
 - В) экологически чистыми;
 - С) не приводить к потере тепловой энергии в окружающую среду;
 - D) быть возобновляемыми и экологически чистыми;
 - Е) все перечисленное.
- 18. Тепловые отходы энергопредприятий и индивидуальных источников энергии составляют:
 - A) 30 %;
 - B) 40 %;
 - C) 50 %;
 - D) 35 %;
 - E) 25 %.
 - 19. В силовых процессах «полезная энергия» определяется по:
 - А) световому потоку ламп;
 - В) количеству теплоты, полученной потребителями или пользователями;
- С) рабочему моменту на валу двигателя, расходу энергии, необходимой в соответствии с теоретическим расчетом проведения заданных усилий;
 - D) расходу энергии, необходимой для проведения заданных условий;
- Е) теоретическому расходу энергии на нагрев, кипение, плавку, испарение материала и проведение эндотермических реакций.
 - 20. К общим закономерностям энергосбережения относятся:
- А) энергосбережение и экономичность при создании систем транспортировки, ремонтопригодность конструкции, позволяющая быстро обнаружить и устранить неполадки и отказы в надежной работе;

- В) эффективная теплоизоляция канала, надежно и долговечно работающая при условиях эксплуатации;
- С) малое гидравлическое сопротивление канала, по которому проходит транспортировка теплоносителя, что обеспечивает малую мощность, затрачиваемую на прокачку теплоносителя;
- D) герметичность систем транспортировки, что обеспечивает энергосбережение на воспроизводство теплоносителя;
 - Е) все перечисленное.
 - 21. С уменьшением нагрузки ниже номинальной температура уходящих газов:
 - А) уменьшается;
 - В) увеличивается;
 - С) уменьшается, а затем резко увеличивается;
 - D) увеличивается, а затем резко уменьшается;
 - Е) остается неизменной.
 - 22. Горючие ВЭР представляют собой:
- А) физическую теплоту основных и побочных продуктов, отходящих газов технологических агрегатов, а также систем охлаждения их элементов;
- В) потенциальную энергию газов, выходящих из технологических агрегатов с избыточным давлением, которое может быть использовано в утилизационных установках для получения других видов энергии;
- С) побочные газообразные продукты технологических процессов, которые могут быть использованы в качестве энергетического или технологического топлива;
- D) химическую теплоту основных и побочных продуктов, отходящих газов технологических агрегатов, а также систем охлаждения их элементов;
 - Е) все перечисленное.
 - 23. Спрос на услуги, которые представляет энергетика это:
 - А) отопление, охлаждение, освещение, бытовые приборы, транспорт;
 - В) отопление, освещение, горячее водоснабжение;
 - С) отопление, горячее водоснабжение, вентиляция;
 - D) бытовые приборы, отопление, освещение, транспорт;
- Е) отопление, охлаждение, горячее водоснабжение, вентиляция, освещение, бытовые приборы, транспорт.
- 24. Запасов нефти для обеспечения энергетической потребности в течение следующих нескольких десятилетий хватит на:
 - А) 30 лет;
 - В) 20 лет;
 - С) 40 лет;
 - D) 50 лет;
 - Е) 100 лет.

- 25. В 1990 году на традиционную биомассу от всего количества возобновляемых энергоресурсов приходилось около:
 - A) 60 %;
 - B) 50 %;
 - C) 40 %;
 - D) 70 %;
 - E) 55 %.

Спецвопросы электроснабжения

1. Вопрос. Каких режимов нейтрали нет.

Ответы.

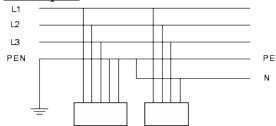
- 1. Глухозаземленная нейтраль
- 2. Глухоизолированная нейтраль.
- 3. Эффективно заземленная нейтраль.
- 4. Изолированная нейтраль
- 5. Нейтраль заземленная через дугогасящий реактор.
- <u>2. Вопрос.</u> Что означают буквы I и T в обозначениях токоведущих проводников в зависимости от их конфигурации. Первая буква.


Ответы.

- 1. І изолированная нейтраль, Т отсутствует соединение с землей.
- 2. І соединение с землей, Т непосредственное соединение с землей.
- 3. I токоведущие части изолированы от земли, T прямая связь нейтрали с землей.
- 4. І заземленная нейтраль, Т изолированная нейтраль.
- <u>3. Вопрос</u> Что означают буквы Т и N в обозначениях токоведущих проводников в зависимости от их конфигурации. Вторая буква

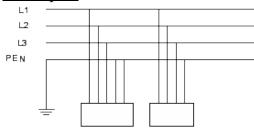
Ответы.

- 1. Т Отсутствует соединение с проводящих частей с землей, N- непосредственное соединение токопроводящих частей с землей.
- 2. Т непосредственное соединение с землей, N соединение проводящих частей с с помощью PE или PE N проводника.
- 3. T изолированная нейтраль , N соединение с проводящих частей с землей отсутствует,
- 4. T заземленная нейтраль, N изолированная нейтраль.


4. Вопрос. Указать тип системы конфигурации сети.

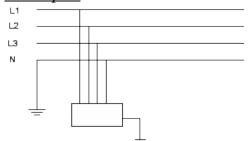
Ответы. 1. TN – S

- 2. TN C S
- 3. TN -C
- 4. TT
- 5. I T


<u>5. Вопрос</u> Указать тип системы конфигурации сети.

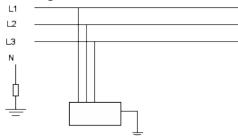
Ответы. 1. TN – S

- 2. TN C S
- 3. TN -C
- 4. TT
- 5. I T


6. Вопрос. Указать тип системы конфигурации сети.

Oтветы. 1. TN - S

- 2. TN C S
- 3. TN -C
- 4. TT
- 5. I T


7. *Вопрос*. Указать тип системы конфигурации сети.

Ответы. 1. TN – S

- 2. TN C S
- 3. TN -C
- 4. TT
- 5. I T

<u>8. Вопрос</u>. Указать тип системы конфигурации сети.

Ответы. 1 TN – S

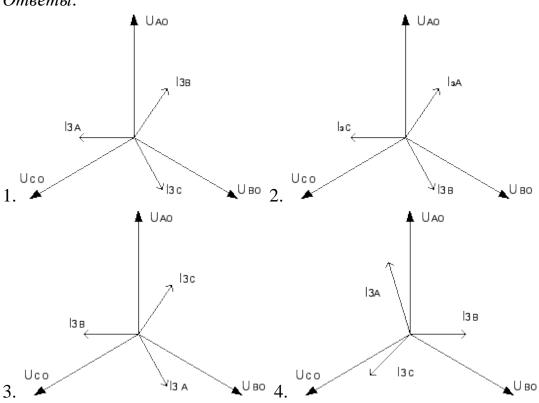
- 2. TN C S
- 3. TN -C
- 4. TT
- 5. I T

9. *Вопрос*. Ток однофазного короткого замыкания в аварийном режиме в системе с глухозаземленной нейтралью

Ответы. 1. $Iок3 = U\phi / Z_{TP}./3 Z_{Л}$

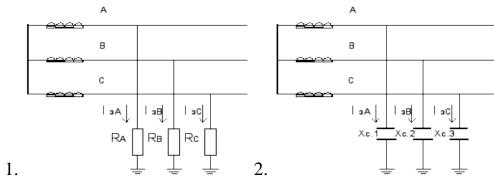
- 2. $Iок3 = P_H / U ф$
- 3. Іокз = $U \phi / R_{\rm Л}$
- 4. Іокз= Uф / Хл

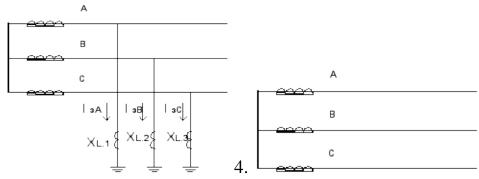
10 . <u>Вопрос</u>. Влияние повторного заземления Rп на величину напряжения на нейтрали UN в аварийном режиме.


Ответы. 1. Чем больше сопротивление повторного заземления Rп, тем больше напряжение на нейтрали UN.

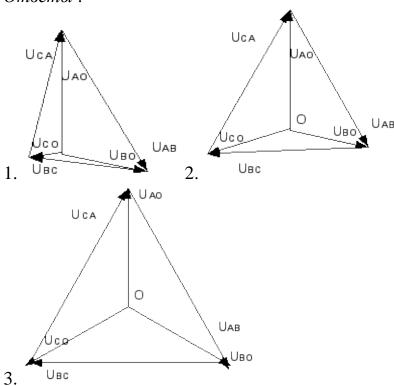
2. Чем меньше сопротивление повторного заземления Rп, тем меньше напряжение на нейтрали UN.

19

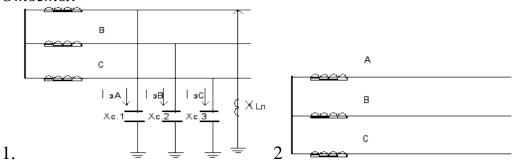

- 3. Чем больше сопротивление повторного заземления Rn, тем меньше напряжение на нейтрали UN.
- 4. Сопротивление повторного заземления Rп не влияет на величину напряжения на нейтрали UN.
- 11. <u>Вопрос</u>. Векторная диаграмма сети с изолированной нейтралью в нормальном режиме.


Ответы.

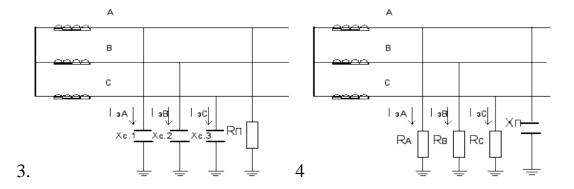
12. <u>Вопрос</u>. Схема замещения сети с изолированной нейтралью в нормальном режиме.



3.


13. <u>Вопрос</u>. Векторная диаграмма сети с изолированной нейтралью в аварийном режиме.

Ответы.



14 . <u>Вопрос</u>. Схема замещения в сети с изолированной нейтралью в аварийном режиме.

Ответы.

21

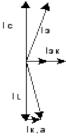
15. Вопрос. Зарядный ток линии с изолированной нейтралью

Oтветы. 1. Із = U ϕ / R

- 2. I₃ = $3 \omega C U \varphi$
- $3. \text{ I}_3 = \text{U}_{\phi} / 3_{\omega} \text{ L}$
- 4. I₃= U ϕ / (ω L 1/ ω C)

16 . <u>Вопрос</u>. Величина допустимого емкостного тока линии с изолированной нейтралью без компенсации.

Oтветы. 1.При U=6 I3 < 30; при U= 10 I3 < 20; при U=35 I3< 10


- 2. U=6 I₃< 10 U= 10 I₃< 20 U=35 I₃ < 30
- 3. $U=6 I_3 < 20 U= 10 I_3 < 30 U=35 I_3 < 10$
- 4. U=6 I₃ < 15 U= 10 I₃< 10 U=35 I₃< 30

17. <u>Вопрос</u>. Формула приближенного расчета зарядного тока а) для воздушных линий, б) для кабельных линий.

Ответы.1. a) I = U/X б) I = U/R

- 2. a) I = UL/10 f) I = UL/350
- 3. a) I = U/R 6) I = U/X
- 4 а) I = UL/350 б) I = UL/10

18. Bonpoc. Режим, показанный на векторной диаграмме

Ответы. 1. До компенсации

- 2. Перекомпенсации
- 3. Недокомпенсации
- 4. Полной компенсации

19. Вопрос. Параметры выбора дугогасящего реактора

Ответы. 1. Іри Up

- 2. Sp и Uн
- 3. І н и Uн
- 4. Sp и I н

20. Величина суммарной мощности дугогасящих реакторов

Ответы. 1. Sp = UH * I 3 макс.

- 2. Sp = 1,5 * Uл * I з
- 3. Sp = 1,25 * U φ * I з мин.
- 4. Sp = 1,25 * U ϕ * I з макс.

<u>21. Вопрос</u>. Коэффициент замыкания на землю в сети с эффективно заземленной нейтралью

Ответы. 1. Кз < 1,2

- $2. \text{ K}_3 < 1.4$
- $3. K_3 < 1.7$
- 4. $K_3 < 2.0$

22. *Вопрос*. В каких сетях выбирается режим с изолированной нейтралью.

Ответы. 1. В сетях напряжением до 1 кВ

- 2. В сетях напряжением 6-10, 35 кВ с токами замыкания на землю больше соответственно 30A, 20A, 10A.
- 3. В сетях напряжением 6-10, 35 кВ с токами замыкания на землю меньше соответственно 30A, 20A, 10A.
- 4. В сетях напряжением выше 110 кВ

<u>23. Вопрос</u>. В каких сетях выбирается режим с эффективно заземленной нейтралью.

Ответы. 1. В сетях напряжением до 1 кВ

- 2. В сетях напряжением 6-10, 35 кВ с токами замыкания на землю больше соответственно 30A, 20A, 10A.
- 3. В сетях напряжением 6-10, 35 кВ с токами замыкания на землю меньше соответственно 30A, 20A, 10A.
- 4. В сетях напряжением выше 110 кВ

Раздел 2.

<u>1. Вопрос</u>. Каким документом регламентируются нормы показателей качества электроэнергии.

Ответы. 1. Гражданским кодексом.

- 2. Правилами устройства электроустановок.
- **3.** ГОСТ
- 4. Правилами технической эксплуатации.
- <u>2. Вопрос</u>. Требования ГОСТ для величины установившегося отклонения напряжения..

Ответы. 1. δ Uy H = 5% Uном δ Uпред = 5% Uном.

- 2. δ Uy H = 5% Uном δ Uпред =10% Uном.
- 3. δ Uy н= 10% Uном δ Uпред =10% Uном.
- 4. δ Uy $_{\rm H}$ = 1% Uном δ Uпред = 5% Uном.
- <u>3. Вопрос</u>. Требования ГОСТ для величины коэффициента несинусоидальности напряжения Ки при номинальном напряжении UH=0,38кB

Ответы 1. Ки норм.=8,0 и Ки пред. = 12,0

- 2. Ки норм =4,0 Ки пред. = 6,0
- 3. Ки норм. = 10,0 Ки пред = 15,0
- 4. Ки норм. =5,0 Ки пред. = 10,0
- 4. *Вопрос*. Требования ГОСТ для величины а)коэффициента несимметрии напряжения по обратной последовательности К2u и б) коэффициента несимметрии напряжения по нулевой последовательности К0u

Ответы 1. а)K2u н = 2% K2u пред. = 4% б) K0u н = 2% K0u пред.=4%.

- 2. а)K2u H = 1% K2u пред. = 2% б) K0u H = 1% K0u пред. = 2%.
- 3. а)K2u H = 4% K2u пред. = 6% б) K0u H = 4% K0u пред. = 6%.
- 4. а)K2u н = 5% K2u пред. = 10% б) K0u н = 5% K0u пред.=10%.
- <u>5. Вопрос</u>. Требования ГОСТ для величины отклонения частоты Δf

 $Omeemы\ 1.\ \Delta f$ н = 0,2 Γ ц Δf пред. =0,4 Γ ц.

- 2. Δf н =0,2% Δf пред. 0,4%
- 3. $\Delta f H = 0.5 \Gamma U \Delta f пред = 1.0 \Gamma U$.
- 4. $\Delta f_H = 0.5\% \Delta f_{\Pi} = 1.0\%$.
- <u>6. Вопрос</u>. Влияние увеличения уровня напряжения на работу электроприемников а) электроосвещения, б) электродвигателей.

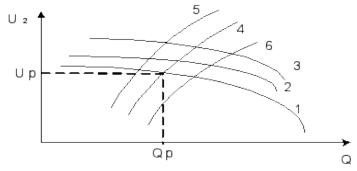
Ответы. 1. a) срок службы ламп накаливания увеличивается б) ротор перегревается

- 2. а) срок службы ламп накаливания уменьшается б) статор перегревается
- 3. а) срок службы ламп накаливания уменьшается б) ротор перегревается
- 4. а) срок службы ламп накаливания увеличивается б) статор перегревается
- <u>7. Вопрос</u>. Влияние уменьшения уровня напряжения на работу электроприемников а) электроосвещения, б) электродвигателей.

Ответы. 1 a) срок службы ламп накаливания увеличивается б) статор перегревается

- 2. а) срок службы ламп накаливания увеличивается, световой поток уменьшается б) ротор перегревается, пусковой момент уменьшается.
- 3. а) срок службы ламп накаливания уменьшается, световой поток уменьшается б) ротор перегревается, пусковой момент увеличивается.
- 4. а) срок службы ламп накаливания уменьшается, световой поток увеличивается б) статор перегревается, пусковой момент уменьшается.
- 8. Bonpoc. Комплекс мероприятий по снижению отклонения напряжения

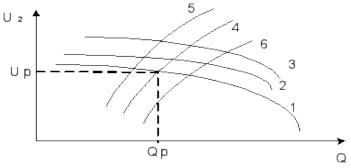
Ответы 1. Регулировка напряжения.


- 2. Стабилизация напряжения.
- 3. Компенсация реактивной энергии.
- 4. Подключение добавочного напряжения.
- <u>9. Вопрос</u>. Комплекс мероприятий по снижению колебания напряжения

Ответы 1. Регулировка напряжения.

- 2. Стабилизация напряжения.
- 3. Компенсация реактивной энергии.
- 4. Подключение добавочного напряжения
- 10. Вопрос. Какие мероприятия позволяют уменьшить отклонение напряжения до допустимой величины δ Uy.

Ответы: 1. Установка фильтров высших гармоник.


- 2. Установка реакторов.
- 3. Компенсация реактивной энергии.
- 4. Компенсация реактивной энергии и подключение добавочного напряжения.
- <u>11. Вопрос</u>. Зависимость а) уровня напряжения от потребляемой реактивной мощности U 2 = f(Q), б) потребляемой реактивной мощности от уровня напряжения Q = f(U 2)

Ответы 1. а) Графики 1,2,3. б) Графики 4,5,6.

- 2. а) Графики 4,5,6 б) Графики 1,2,3.
- 3. а) График 1 б) График 2
- 4. а) График 4 б) График 5

<u>12. Вопрос</u>. Графики, зависимости уровня напряжения от потребляемой реактивной мощности U 2 = f(Q) и потребляемой реактивной мощности от уровня напряжения Q = f(U 2), построенные а) при увеличении U доб. б) при изменении Q ку

Ответы 1. а) Графики 2,3. б) Графики 5,6.

- 2. а) Графики 5,6 б) Графики 2,3.
- 3. а) График 1 б) График 2
- 4. а) График 4 б) График 5

13. Bonpoc. Влияние колебания напряжения δ Ut на работу электроприемников

Ответы. 1. Срок службы ламп накаливания увеличивается, срок службы электродвигателей уменьшается.

- 2. Срок службы ламп накаливания уменьшается, срок службы электродвигателей увеличивается
- 3. Мерцание ламп освещения, нарушение работы средств связи и телевидения.
- 4. Уменьшение светового потока ламп освещения.

<u>14. Вопрос</u>. Какие электроприемники создают в сети колебания напряжения δ Ut .

Ответы. 1. Электродвигатели.

- 2. Нелинейная нагрузка (выпрямители)
- 3. Резкопеременная нагрузка (дуговые сталеплавильные печи, прокатные станы и т.п.).
- 4. Электроосвещение.

<u>15. Вопрос</u>. Какие устройства позволяют уменьшить размах колебания напряжения до допустимой величины δ Ut .

Ответы. 1. Фильтры.

- 2. Реакторы
- 3. Батареи конденсаторов
- 4. Синхронные компенсаторы и статические компенсирующие устройства.
- <u>16. Вопрос</u>. Из чего состоят статические компенсирующие устройства (для компенсации колебаний напряжения) прямой компенсации.

Ответы. 1. Фильтров.

- 2. Реакторов.
- 3. Батареи конденсаторов и фильтров высших гармоник.
- 4. Фильтров высших гармоник.
- <u>17. Вопрос</u>. Из чего состоят статические компенсирующие устройства (для компенсации колебаний напряжения) косвенной компенсации.

Ответы. 1. Фильтры и реакторы.

- 2. Плавно регулируемый реактор и нерегулируемые батареи конденсаторов или фильтры высших гармоник
- 3. Батареи конденсаторов и фильтры высших гармоник.
- 4. Фильтры высших гармоник.
- 18. Вопрос. Источники несимметрии напряжения и токов при а) продольной и б) поперечной несимметрии.

Ответы: 1. а) несимметрия источников тока, б) несимметрия нагрузки.

- 2. а) несимметрия нагрузки, б) несимметрия источников тока.
- 3. а) несимметрия емкостей, б) несимметрия индуктивностей.
- 4. а) несимметрия индуктивностей, б) несимметрия емкостей.
- 19. Bonpoc. Влияние несимметрии напряжения и токов на работу электродвигателей.

Ответы: 1. Нагрев двигателей.

- 2. Вибрация двигателей.
- 3. Создание противодействующего момента на валу.
- 4. Все вышеперечисленное.
- <u>20. Вопрос</u>. Какие мероприятия позволяют уменьшить несимметрию напряжения и токов у потребителя.

Ответы: 1. Равномерное распределение нагрузок по фазам.

2. Включение батарей конденсаторов.

- 3. Включение индуктивностей и емкостей в ненагруженные фазы.
- 4. Равномерное распределение нагрузок по фазам и включение индуктивностей и емкостей в ненагруженные фазы.
- 21. *Вопрос*. Источники несинусоидальности напряжения.

Ответы: 1. Электронагреватели.

- 2. Электроосвещение
- 3. Батареи конденсаторов
- 4. Вентильные преобразователи.
- 22. *Вопрос*. Появление резонанса в сетях с высшими гармониками.

Ответы: 1. При включении батарей конденсаторов.

- 2. При отключении батарей конденсаторов.
- 3. При включении трансформаторов.
- 4. При включении реакторов.
- 23. Вопрос. Устройства для уменьшения несинусоидальности напряжения.

Ответы: 1. Батареи конденсаторов.

- 2. Реакторы.
- 3. Фильтры.
- 4. Трансформаторы.
- 24. Вопрос. Параметры идеального фильтра.

Ответы: 1. $vp \omega L = 0$

- 2. $vp \omega C = 0$
- 3. $vp \omega L = 1/vp \omega C$
- 4. $vp \omega L > 1/vp \omega C$
- <u>25. Вопрос</u>. Рекомендуемые мероприятия по уменьшению колебаний частоты.

Ответы: 1. Увеличение мощности короткого замыкания трансформатора.

- 2. Увеличение мощности батарей конденсаторов.
- 3. Увеличение мощности реакторов.
- 4. Увеличение мощности нагрузки.
- <u>26. Вопрос</u>. Какими приборами осуществляется контроль всех показателей качества электроэнергии

Ответы: 1. Амперметром

2. Вольтметром

- 3. Анализатором высших гармоник
- 4. Информационно-вычислительным комплексом

<u>27. Вопрос</u>. Штрафные санкции за электроэнергию ухудшенного качества.

Ответы: 1. За ухудшение качества электроэнергии потребителю назначается фиксированный штраф.

- 2. За ухудшение качества электроэнергии энергоснабжающая организация не взимает плату с потребителя.
- 3. За ухудшение качества электроэнергии тариф потребителя увеличивается на коэффициент от 0,2 до 10%.
- 4. За ухудшение качества электроэнергии тариф потребителя увеличивается на коэффициент 25%.

28. *Вопрос*. Какие виды учета электроэнергии не используются.

Ответы: 1. Активный и реактивный

- 2. Технический и коммерческий.
- 3. Точный и приближенный
- 4. Инструментальный

29. *Вопрос*. Зонный учет электроэнергии.

Ответы: 1. Учет потребления электроэнергии по времени суток

- 2. Учет потребления электроэнергии по дням недели.
- 3. Учет потребления электроэнергии по времени года
- 4. Учет потребления электроэнергии по уровню напряжения.

30. Вопрос. Не применяемый тип счетчиков электроэнергии

Ответы: 1. Прямого включения

- 2. Косвенного включения.
- 3. Трансформаторный
- 4. Электронный

31. Вопрос. Назначение АСКУЭ.

Ответы: 1. Учет электроэнергии

- 2. Контроль электроэнергии
- 3. Учет и контроль электроэнергии
- 4. Учет и контроль электроэнергии и показателей качества.

32. Вопрос. Порядок работы двухтарифного счетчика

Ответы: 1. Включение шкал учета по времени суток

- 2. Включение шкал учета по дням недели.
- 3. Включение шкал учета по времени года.
- 4. Включение шкал учета по уровню напряжения.

33. Bonpoc. Порядок учета реактивной энергии.

Ответы: 1. Учет по счетчику реактивной энергии.

- 2. Учет потребления реактивной энергии в сравнении с эффективным значением реактивной энергии Qэ.
- 3. Скидки и надбавки к тарифу за компенсацию реактивной энергии
- 4. Скидки и надбавки к тарифу за установку компенсирующих устройств.

Учебное издание

Безик Валерий Александрович Шелоп Михаил Александрович

Актуальные вопросы современных систем электроснабжения

Методические указания по выполнению самостоятельной работы студентов направления 13.04.02 - Электроэнергетика и электротехника

Редактор Лебедева Е.М.

Подписано к печати 17.04.2018 г. Формат 60x84. 1/16. Бумага офсетная. Усл. п. 1,80. Тираж 25 экз. Изд. № 5814.