ФГБОУ ВО «Брянский государственный аграрный университет»

Факультет среднего профессионального образования

РАБОЧАЯ ТЕТРАДЬ

по математике

Студента (ки)
1 курса группы
Специальность:

УДК 510(076) ББК 22.1 Д 93

Дьяченко, О.В. Рабочая тетрадь по математике. / О.В. Дьяченко. – Брянск.: Издательство Брянский ГАУ, 2015.-160 с.

Рекомендована цикловой методической комиссией общеобразовательных, гуманитарных и социально-экономических, математических и общих естественнонаучных дисциплин протокол N_2 4 от 10 февраля 2015 г.

[©] Брянский ГАУ, 2015

[©] Дьяченко О.В., 2015

Содержание

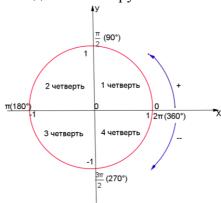
Введение	4
Тема 1. Тригонометрические функции числового аргумента	6
Тема 2. Основные формулы тригонометрии	13
Тема 3. Введение понятия линий синуса, косинуса, тангенса и	18
котангенса. Построение графиков	
Тема 4. Исследование функций. Схема исследования функций	26
Тема 5. Обратные тригонометрические функции	33
Тема 6. Решение простейших тригонометрических уравнений	38
Тема 7. Решение тригонометрических неравенств	44
Тема 8. Сложные тригонометрические уравнения, неравенства,	51
системы	
Тема 9. Понятие предела. Замечательные пределы	55
Тема 10. Понятие непрерывности. Приращение функции. Произ-	62
водная функции	
Тема 11. Касательная к графику функции. Приближенные вы-	67
числения	
Тема 12. Производная сложной функции	72
Тема 13. Применение производной. Приближенные вычисления	77
Тема 14. Исследование функций с помощью производной	81
Тема 15. Первообразная	92
Тема 16. Определенный интеграл	97
Тема 17. Площадь криволинейной трапеции. Формула Ньютона-	103
Лейбница	
Тема 18. Понятие степени. Иррациональные уравнения. Степень	113
с рациональным показателем	
Тема 19. Показательная функция. Логарифмическая функция.	121
Понятие об обратной функции. Степенная функция	
Тема 20. Решение показательных уравнений и неравенств	131
Тема 21. Логарифмы и их свойства	138
Тема 22. Логарифмические уравнения и неравенства	143
Тема 23. Производная показательной и логарифмической функ-	153
ции. Число е	
Список литературы	159

Введение

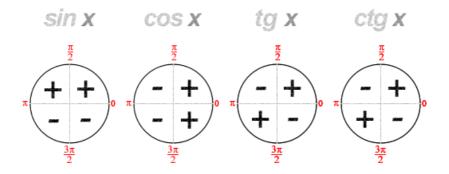
Рабочая тетрадь по математике для студентов 1 курса специальностей 35.02.08 «Электрификация и автоматизация сельского хозяйства», 23.02.03 «Техническое обслуживание и ремонт автомобильного транспорта», 20.02.04 «Пожарная безопасность», 38.02.01 «Экономика и бухгалтерский учет (по отраслям)» составлена в соответствии с действующими рабочими программами стандарта ГОС 3+ и может быть использована для аудиторной и самостоятельной работы обучающимися, а также для выполнения домашних работ. Тетрадь содержит задачи репродуктивного, поискового характера, а так же имеется ряд задач повышенной сложности, решение которых требует определенных умений и навыков, которые могут служить базой для дальнейшего изучения курса математики.

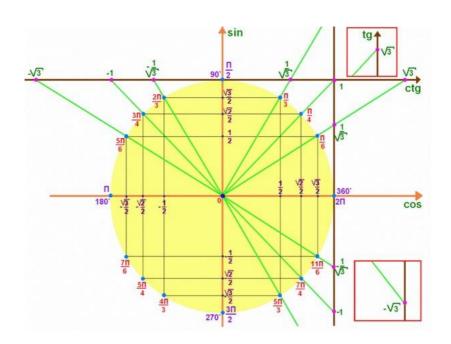
В процессе изучения тем у студентов формируются общие компетенции (ОК)

- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, определять методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- OК 3. Решать проблемы, оценивать риски и принимать решения в нестандартных ситуациях.
- ОК 4. Осуществлять поиск, анализ и оценку информации, необходимой для постановки и решения профессиональных задач, профессионального и личностного развития.
 - ОК 5. Использовать информационно-


коммуникационные технологии для совершенствования профессиональной деятельности.

- OK 6. Работать в коллективе и команде, обеспечивать ее сплочение, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Ставить цели, мотивировать деятельность подчиненных, организовывать и контролировать их работу с принятием на себя ответственности за результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- OК 9. Быть готовым к смене технологий в профессиональной деятельности.


Тема 1. Тригонометрические функции числового аргумента


Запомни!

Единичная окружность

	00	30°	45°	.09	06،	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
sin	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
soo	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tg	0	$\frac{\sqrt{3}}{3}$	1	√3	_	-√3	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	√3	_	-√3	-1	$-\frac{\sqrt{3}}{3}$	0
ctg	_	√3	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	-√3	-	√3	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	-√3	_

Практическая работа

1. Вычислите:

a)
$$\sin \frac{\pi}{3} + 2\cos \frac{\pi}{6} - \tan 45^{\circ} - \frac{1}{2} \cot \frac{\pi}{2}$$

6)
$$\cos\left(-\frac{\pi}{3}\right) + \operatorname{tg}\left(-\frac{\pi}{6}\right) - \operatorname{ctg}\left(-\frac{\pi}{4}\right)$$

д)
$$3\cos\frac{\pi}{3} - tg\frac{\pi}{4} + \frac{1}{3}ctg\frac{\pi}{6} + \sin 90^{\circ}$$

e) tg
$$(-30^{\circ})$$
 - ctg $\left(-\frac{\pi}{3}\right)$ + cos $\left(-\pi\right)$

2. Найдите $\sin \alpha$, если $\cos \alpha = \frac{2}{5}$ и $\frac{3\pi}{2} \le \alpha \le 2\pi$

Найдите $\cos \alpha$, если $\sin \alpha = \frac{1}{4}$ и $0 \le \alpha \le \frac{\pi}{2}$

-i-- 1200 L -i-- 1100

3. Найдите значение выражения: $\frac{\sin 130^\circ + \sin 110^\circ}{\cos 130^\circ + \cos 110^\circ}$

Найдите значение выражения: $\frac{\sin 145^{\circ} - \sin 125^{\circ}}{\cos 145^{\circ} - \cos 125^{\circ}}$

4. Упростите выражение: $\frac{1-\sin^4\alpha}{\sin^2\alpha\cdot(1+\sin^2\alpha)}$

Упростите выражение: $3\cos^2\alpha + \frac{3}{\cot g^2\alpha + 1} - 22,4$

Самостоятельная работа

Вариант 1

1. Вычислите:

a)
$$tg \frac{\pi}{3} + 4ctg \frac{\pi}{4} - \sin 30^0 + \frac{1}{5} \cos 90^0$$

6)
$$\sin\left(-\frac{\pi}{3}\right) - \cos\left(-\frac{\pi}{4}\right) + tg\left(-\frac{\pi}{6}\right)$$

2. Найдите tg
$$\alpha$$
, если $\cos \alpha = -\frac{3}{5}$ и $\frac{\pi}{2} \le \alpha \le \pi$

3. Найдите значение выражения:
$$\frac{\cos 185^{\circ} + \cos 115^{\circ}}{\sin 185^{\circ} + \sin 115^{\circ}}$$

4. Упростите выражение:
$$\frac{\sin \alpha}{1 + \cos \alpha} + \frac{1 + \cos \alpha}{\sin \alpha}$$

Вариант 2

1. Вычислите:

a)
$$\sin \pi + 2\cos \frac{\pi}{3} - \operatorname{tg} 45^0 + \frac{1}{3}\operatorname{ctg} 30^0$$

δ)
$$tg\left(-\frac{\pi}{6}\right) + ctg\left(-\frac{\pi}{3}\right) - cos\left(-\frac{\pi}{4}\right)$$

2. Найдите ctg
$$\alpha$$
, если sin $\alpha = \frac{1}{5}$ и $0 \le \alpha \le \frac{\pi}{2}$

3. Найдите значение выражения:
$$\frac{\sin 290^\circ + \sin 50^\circ}{\cos 290^\circ - \cos 50^\circ}$$

4.Упростите выражение:
$$\frac{\cot \alpha - \cot \alpha}{\cos \alpha - \sin \alpha} - \frac{\cot \alpha}{\sin \alpha}$$

Домашнее задание

1. Найти радианную меру угла:

$$135^{\circ} = \frac{\pi}{180} \cdot \dots = \dots pad$$

$$18^{\circ} = \frac{\pi}{180} \cdot 18 = \frac{18\pi}{180} = \dots pad$$

$$54^{\circ} = \frac{\pi}{180} \cdot 54 = \frac{\dots \pi}{180} = \dots pad$$

2. Найти градусную меру угла, выраженного в радианах:

$$\frac{\pi}{18} p_{ad} = (\frac{180}{\pi} \cdot \frac{\pi}{18})^{\circ} = (\frac{180}{18})^{\circ} = 10^{\circ}$$

$$\frac{5\pi}{6} p_{ad} = (\frac{180}{\pi} \cdot \frac{5\pi}{6})^{\circ} = (\frac{\dots}{6})^{\circ} = \dots^{\circ}$$

$$\frac{\pi}{20} p_{ad} = (\frac{180}{\pi} \cdot \frac{\pi}{20})^{\circ} = (\frac{180}{20})^{\circ} = \dots^{\circ}$$

$$\frac{\pi}{3} p_{ad} = (\frac{180}{\pi} \cdot \dots)^{\circ} = \dots^{\circ}$$

Тема 2. Основные формулы тригонометрии

Запомни!

Основное тригонометрическое свойство

$$\sin^{2} \alpha + \cos^{2} \alpha = 1 \implies \sin^{2} \alpha = 1 - \cos^{2} \alpha$$

$$\cos^{2} \alpha = 1 - \sin^{2} \alpha$$

$$tg\alpha = \frac{\sin \alpha}{\cos \alpha} \qquad ctg\alpha = \frac{\cos \alpha}{\sin \alpha}$$

$$\Rightarrow tg\alpha \cdot ctg\alpha = 1$$

$$1 + tg^{2}\alpha = \frac{1}{\cos^{2} \alpha} \qquad 1 + ctg^{2}\alpha = \frac{1}{\sin^{2} \alpha}$$

Формулы сложения

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha + \tan \beta}, \quad \alpha, \beta, (\alpha + \beta) \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha + \tan \beta}{1 + \tan \alpha + \tan \beta}, \quad \alpha, \beta, (\alpha - \beta) \neq \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$$

Формулы двойного угла

$$\sin 2\alpha = 2\sin(\alpha)\cos(\alpha)$$

$$\sin(2\alpha) = \frac{2tg\alpha}{tg^2\alpha + 1}$$

$$\cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha$$

$$\cos(2\alpha) = \frac{1 - tg^2\alpha}{1 + tg^2\alpha}$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

Формулы половинного аргумента

$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$$

$$tg^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$$

$$\sin^{2} \frac{x}{2} = \frac{1 - \cos x}{2} \qquad tg^{2} \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$$

$$\cos^{2} \frac{x}{2} = \frac{1 + \cos x}{2} \qquad tg^{2} \frac{x}{2} = \frac{1 + \cos x}{1 - \cos x}$$

$$tg^2 \frac{x}{2} = \frac{1 + \cos x}{1 - \cos x}$$

$$tg \frac{x}{2} = \frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x}$$
$$ctg \frac{x}{2} = \frac{\sin x}{1 - \cos x} = \frac{1 + \cos x}{\sin x}$$

$$ctg \frac{x}{2} = \frac{\sin x}{1 - \cos x} = \frac{1 + \cos x}{\sin x}$$

Формулы суммы и разности

$$Sin \alpha + Sin \beta = 2 Sin \frac{\alpha + \beta}{2} Cos \frac{\alpha - \beta}{2};$$

$$Sin \alpha - Sin \beta = 2 Cos \frac{\alpha + \beta}{2} Sin \frac{\alpha - \beta}{2};$$

$$Cos \alpha + Cos \beta = 2 Cos \frac{\alpha + \beta}{2} Cos \frac{\alpha - \beta}{2};$$

$$Cos \alpha - Cos \beta = -2 Sin \frac{\alpha + \beta}{2} Sin \frac{\alpha - \beta}{2};$$

$$tg \alpha + tg \beta = \frac{Sin(\alpha + \beta)}{Cos \alpha Cos \beta};$$

$$ctg \alpha - ctg \beta = \frac{Sin(\alpha - \beta)}{Cos \alpha Cos \beta}.$$

Формулы приведения

			A	ргумент	t		
Функция	$\frac{\pi}{2}$ - α	$\frac{\pi}{2} + \alpha$	π-α	π+α	$\frac{3\pi}{2}$ $-\alpha$	$\frac{3\pi}{2} + \alpha$	2π — α
sin t	cos α	cos α	sin α	—sin α	— cos α	—cos α	sin α
cos t	sin α	—sin α	cos α	—cos α	—sin α	sin α	cos α
tg t	ctg a	—ctg α	tg α	tg a	ctg α	—ctg α	-tg α
ctg t	tg a	—tg α	-ctg α	ctg a	tg α	—tg a	-ctg a

Практическая работа

1. Вычислить: $3\sin\frac{\pi}{6} + 2\cos\frac{\pi}{6} - tg\frac{\pi}{3} =$ ______

sin73°·cos17° - cos73°·sin17°=______

$$\cos\frac{8\pi}{7}\cdot\cos\frac{\pi}{7} + \sin\frac{8\pi}{7}\cdot\sin\frac{\pi}{7} = \underline{\qquad}$$

$$\cos150^{\circ} = \underline{\qquad} \sin240^{\circ} = \underline{\qquad}$$

2. Уπростить: (1-sinα)·(1+sinα)=_____

 $\frac{1}{\cos^2\alpha} - 1 = \underline{\hspace{1cm}}$

$$\frac{1+tg^2\alpha}{1+ctg^2\alpha} = \underline{\hspace{1cm}}$$

$$\frac{ctg(\frac{\pi}{2} - \alpha) - tg(\pi + \alpha) + \sin(\frac{3\pi}{2} - \alpha)}{\cos(\pi + \alpha)} = \underline{\hspace{2cm}}$$

$$\frac{\sin(\frac{3\pi}{2} + \alpha)}{\cot g(2\pi - \alpha)} \cdot \frac{tg(\frac{\pi}{2} + \alpha)}{\sin(\pi + \alpha)} = \underline{\hspace{1cm}}$$

$$\frac{\sin(\pi - \alpha) + \cos(\frac{\pi}{2} + \alpha) + ctg(\pi - \alpha)}{tg(\frac{3\pi}{2} - \alpha)} = \underline{\hspace{1cm}}$$

$$\frac{\sin^2(\pi+\alpha)+\sin^2(\frac{\pi}{2}+\alpha)}{\cos(\frac{3\pi}{2}+\alpha)}\cdot ctg\left(\frac{3\pi}{2}-\alpha\right) = \underline{\hspace{1cm}}$$

Самостоятельная работа

3. Упростить:
$$\frac{\sin 2\alpha}{(\sin \alpha + \cos \alpha)^2 - 1} = \underline{\hspace{1cm}}$$

$$\sin 4,25 \cdot \cos 1,11 - \sin 1,11 \cdot \cos 4,25 =$$

$$\sin^{3\pi}/_{7} \cdot \sin^{5\pi}/_{21} - \cos^{3\pi}/_{7} \cdot \cos^{5\pi}/_{21} =$$

$$\sin \alpha - \sin (\alpha + \beta) + \cos \alpha \cdot \cos (\alpha + \beta) = \underline{\hspace{1cm}}$$

$$\sin (15^\circ + \alpha) \cdot \cos (15^\circ - \alpha) + \sin (15^\circ - \alpha) \cdot \cos (15^\circ + \alpha) =$$

Домашняя работа

$$\sin \frac{8\pi}{3} \cdot \cot \frac{11\pi}{6} + \cos \frac{29\pi}{6} \cdot \tan \frac{4\pi}{3} + \frac{1}{\cos \frac{23\pi}{3} \cdot \sin \frac{11\pi}{6}} + 7$$
Вычислить:

17

Тема 3. Введение понятия линий синуса, косинуса, тангенса и котангенса. Построение графиков

Функция y = sinx, её свойства и график

Запомни!

Основные свойства:

Область определения — множество R всех действительных чисел;

Множество значений – отрезок[-1;1];

Функция у= $\sin x$ – периодическая с периодом 2π , т.е.

 $\sin(x+2\pi)=\sin x$

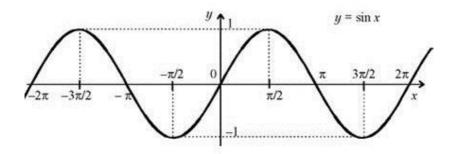
Функция y=sinx - нечётная, т.е.sin(-x)=-sinx

Функция y=sinx:

возрастает на отрезках
$$\left[-\frac{\pi}{2}+2\pi n;\frac{\pi}{2}+2\pi n\right],n\in Z$$

убывает на отрезках
$$\left\lceil \frac{\pi}{2} + 2\pi n; \frac{3\pi}{2} + 2\pi n \right\rceil, n \in \mathbb{Z}$$

Функция y=sinx принимает


Наибольшее значение, равное 1, при

$$\mathbf{x} = \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$$

Наименьшее значение, равное –1, при х=-

$$\frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$$

Значение равное нулю, при $x = \pi n, n \in \mathbb{Z}$

Функция y = cosx, её свойства и график

Запомни!

Основные свойства:

Область определения – множество R всех действительных чисел;

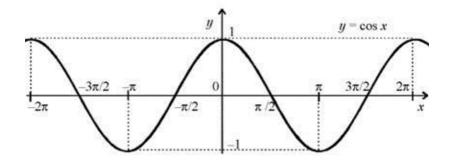
Множество значений – отрезок[-1;1];

Функция у= $\cos x$ – периодическая с периодом 2π , т.е.

 $\cos(x+2\pi)=\cos x$

Функция у=cosx чётная, т.е.cos(-x)=cosx

Функция у=cosx:


возрастает на отрезках $\left[-\pi+2\pi n;2\pi n\right],n\in Z$ убывает на отрезках $\left[2\pi n;\pi+2\pi n\right],n\in Z$

Функция у=cosx принимает

Наибольшее значение, равное 1, при $x=2\pi n, n \in \mathbb{Z}$ Наименьшее значение, равное -1, при

 $x = \pi + 2\pi n, n \in \mathbb{Z}$

Значение равное нулю, при $x = \frac{\pi}{2} + \pi n, n \in \mathbb{Z}$

Функция у = tgx, её свойства и график

Запомни!

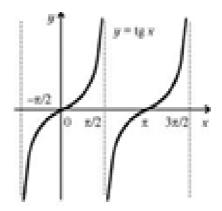
Основные свойства:

Область определения — множество R всех действительных нисец $\frac{\pi}{r} + 2\pi n \in \mathbb{Z}$:

чисел, кроме чисел $\frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$;

Множество значений – множество R всех действительных чисел;

Функция у=tgx — периодическая с периодом π , т.е. $tg(x+\pi)=tgx$


Функция у=tgx нечётная, т.е.tg(-x)=-tgx

Функция y=tgx возрастает (убывает) на интервалах

$$\operatorname{tg} x > 0$$
 при $x \in \left(\pi n, \frac{\pi}{2} + \pi n\right), n \in \mathbf{Z}$

tg
$$x < 0$$
 при $x \in \left(-\frac{\pi}{2} + \pi n, \pi n\right), n \in \mathbf{Z}$

Функция у=tgx принимает значение равное нулю, при $x=\pi n, n\in Z$

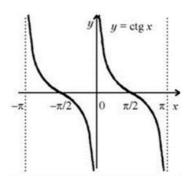
Функция y = ctgx, её свойства и график

Запомни!

Основные свойства:

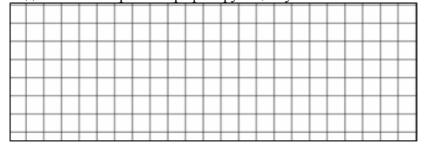
Область определения — множество R всех действительных чисел, кроме чисел $\pi n, n \in \mathbb{Z}$;

Множество значений – множество R всех действительных чисел;

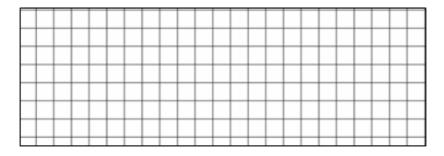

Функция у=ctgx – периодическая с периодом π , т.е. $ctg(x+\pi)=tgx$

Функция у=ctgx нечётная, т.е.tg(-x)=-tgx

Функция у=ctgx возрастает (убывает) на интервалах

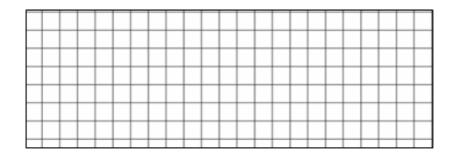

$$\operatorname{ctg} x > 0$$
 при $x \in \left(\pi n, \frac{\pi}{2} + \pi n\right), n \in \mathbf{Z}$, $\operatorname{ctg} x < 0$ при $x \in \left(-\frac{\pi}{2} + \pi n, \pi n\right), n \in \mathbf{Z}$

Функция у=ctgx принимает значение равное нулю, при $x=\pi n, n\in Z$



Практическая работа

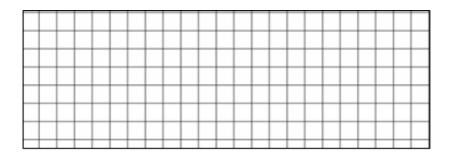
Задание 1:Изобразить график функции y=2+sinx

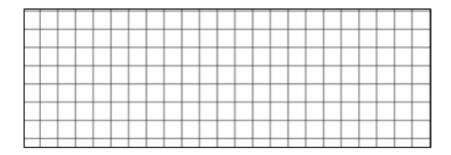

Задание 2:Изобразить график функции y=cos2x

Задание	3.	Определите,	является	ли	функция
$f(x) = \cos x$	$\sin x - \frac{1}{2}$	$-x^4$ четной или	и нечетной?		
Задание 4		йдите наимены гіп. *	ший положи	тельні	ый период

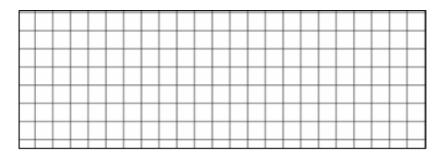
Задание 5. В одной системе координат постройте графики

функций у $=\cos x$, у $=\cos x - 3$. Для каждой из функций укажите область определения и область значений.

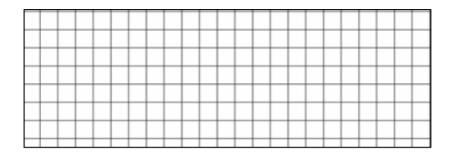

Задание 6. Определите, является ли функция $f(x) = \sin x - 4x^3$ четной или нечетной?


Задание 7. Найдите наименьший положительный период функции $y = 4tg \ 3x$.

Задание 8. В одной системе координат постройте графики функций $y = \sin x$, $y = 3\sin x$. Для каждой из функций укажите область определения и область значений.



Задание 9. В одной системе координат постройте графики функций у = $\operatorname{ctg} x$, у = $\operatorname{ctg} x + 2$. Для каждой из функций укажите область определения и область значений.



Домашняя работа

Задание 1. В одной системе координат постройте графики функций у $=\cos x$, у $=4\cos x$. Для каждой из функций укажите область определения и область значений

Задание 2. В одной системе координат постройте графики функций $y = \sin x$, $y = 3\sin x$. Для каждой из функций укажите область определения и область значений

Тема 4. Исследование функций. Схема исследования функций

Запомни!

Линейная функция - это функция вида: y = kx + b

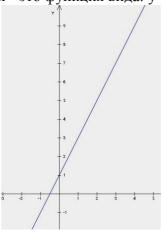
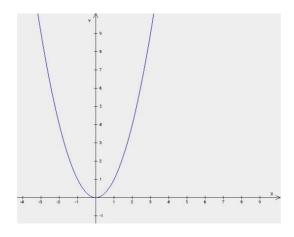
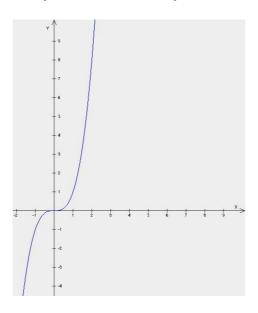




График функции $y = x^2$ называется парабола:

График функции $y = x^3$ называется кубическая парабола:

Преобразования графиков функций

Общий вид функции	Преобразования
y = f(x - b)	Параллельный перенос графика вдоль оси абсцисс на b единиц ■ вправо, если b > 0; ■ влево, если b < 0.
y = f(x+b)	 влево, если b > 0; вправо, если b < 0.
y = f(x) + m	Параллельный перенос графика вдоль оси ординат на т единиц в вверх, если т > 0, вниз, если т < 0.
	Отражение графика
y = f(-x)	• симметричное отражение графика относительно оси <i>ординат.</i>
y = -f(x)	• симметричное отражение графика относительно оси абсцисс.
	Сжатие и растяжение графика
y = f(kx)	 При k > 1 — сжатие графика к оси ординат в k раз, при 0 < k < 1 — растяжение графика от оси ординат в k раз.
y = kf(x)	 При $k > 1$ — растяжение графика от оси абсцисс в k раз, при $0 < k < 1$ — сжатие графика к оси абсцисс в k раз.
	Преобразования графика с модулем
y = f(x)	• При $f(x) > 0$ — график остаётся без изменений, • при $f(x) < 0$ — график симметрично отражается относительно оси абсцисс.
y = f(x)	• При $x \ge 0$ — график остаётся без изменений, • при $x < 0$ — график симметрично отражается относи- тельно оси ординат.

Практическая работа

Задание 1. Укажите области определения функций:

1)
$$y = \frac{1}{x^2 - 9}$$
;_____

2)
$$y = \sin 2x$$
.

3)
$$y = \frac{1}{\sqrt{x+3}}$$
;_____

Задание 2. Найдите нули (корни) функций:

1)
$$y = x^3 - 9x$$
;_____

$$2) y = \sin 2x;$$

Задание 3. Определите промежутки знакопостоянства функций:

1)
$$y = x^3 - 5x^2 + 6x$$
;

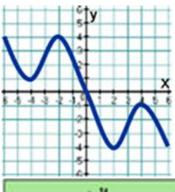
2)
$$y = \sin \frac{x}{2}$$
;_____

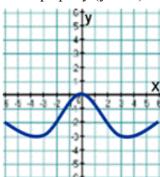
Задание 4. Укажите, какие из нижеприведенных функций являются: а) четными; б) нечетными:

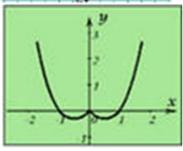
1)
$$y = x^3 - 9x$$
;_____

2)
$$y = x^3 - 5x^2 + 6x$$
;

Задание 5. Найдите периоды функций:


$$1) y = \sqrt{3} \sin\left(2x + \frac{\pi}{3}\right);$$


2)
$$y = 25\cos\left(\frac{3}{2}x + \frac{\pi}{12}\right);$$

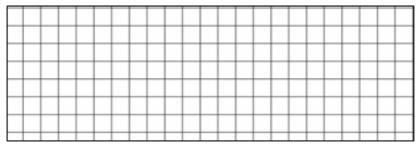

3)
$$y = 15tg\left(\frac{7}{10}x - \frac{\pi}{4}\right);$$

Самостоятельная работа

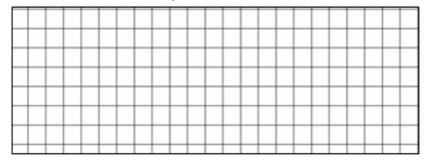
Задание 1. Исследуйте функции по графику (устно):

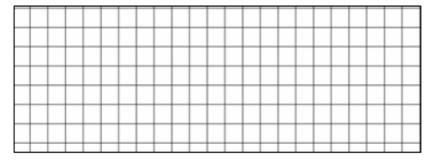
Задание 2. Проведите по общей схеме исследование каждой из функций и постройте ее график f(x) = 5 - 2x

(x) = 3 - 2x - 3	x ²		
(x) = 3x - 2			


Домашняя работа

Задание 1. Проведите по общей схеме исследование каждой из функций:


$$f(x) = x^2 - 3x + 2$$



$$f(x) = x^3 - 1$$

$$f(x) = \sqrt{x - 3}$$

Тема 5. Обратные тригонометрические функции

Запомни!

Связь между тригонометрическими функциями:

$$\sin 30^{\circ} = \frac{1}{2}$$
 \Rightarrow $30^{\circ} = \arcsin \frac{1}{2}$
 $\sin 90^{\circ} = 1$ \Rightarrow $90^{\circ} = \arcsin 1$
 $\arcsin \frac{\sqrt{2}}{2} = 45^{\circ}$ или $\frac{\pi}{4}$
 $\arcsin 0 = 0$
 $\arccos \frac{1}{2} = 60^{\circ}$ или $\frac{\pi}{3}$
 $\arccos (-1) = 180^{\circ}$ или π
 $\arccos 0 = 90^{\circ}$ или $\frac{\pi}{2}$
 $\arctan 180^{\circ}$ или $\frac{\pi}{4}$ $\arctan 180^{\circ}$ или $\frac{\pi}{4}$

Операции с обратными тригонометрическими функциями:

 $arctg\sqrt{3} = 60^{\circ}$ или $\frac{\pi}{2}$ $arcctg\sqrt{3} = 30^{\circ}$ или $\frac{\pi}{6}$

$$\sin(\arcsin x) = x \qquad \cos(\arccos x) = x$$

$$\sin(\arccos x) = \sqrt{1 - x^2} \qquad \cos(\arcsin x) = \sqrt{1 - x^2}$$

$$\sin(\arctan x) = \frac{x}{\sqrt{1 + x^2}} \qquad \cos(\arctan x) = \frac{1}{\sqrt{1 + x^2}}$$

$$\sin(\arctan x) = \frac{x}{\sqrt{1 + x^2}} \qquad \cos(\arctan x) = \frac{1}{\sqrt{1 + x^2}}$$

$$\sin(\arctan x) = \frac{1}{\sqrt{1 + x^2}} \qquad \cos(\arctan x) = \frac{x}{\sqrt{1 + x^2}}$$

$$tg(arctgx) = x$$

$$tg(arcsin x) = \frac{x}{\sqrt{1 - x^2}}$$

$$tg(arccs x) = \frac{\sqrt{1 - x^2}}{x}$$

$$tg(arccs x) = \frac{\sqrt{1 - x^2}}{x}$$

$$tg(arccs x) = \frac{x}{\sqrt{1 - x^2}}$$

$$tg(arcctgx) = \frac{1}{x}$$

$$tg(arctgx) = \frac{1}{x}$$

$$tg(arctgx) = \frac{1}{x}$$

Практическая работа

1) Чему равны углы:

$$\arcsin \frac{1}{2}$$
 $arctg\sqrt{3}$ $arcsin(-0,76)$ $arctg(-2)$ $arccos \frac{\sqrt{3}}{2}$ $arcctg1$ $arccos(-0,326)$ $arcctg(-0,45)$

2) Область определения функций:

 $\begin{array}{ll}
\operatorname{arcsin} x & \operatorname{arctgx} \\
\operatorname{arccos} x & \operatorname{arcctgx}
\end{array}$

3) Чему равны:

$$arcsin(-x)$$
 $arctg(-x)$
 $arccos(-x)$ $arcctg(-x)$

Самостоятельная работа

I. Закончите решение:

$$\arcsin 1 + \arcsin \frac{\sqrt{2}}{2} = \frac{\pi}{2} + \frac{\pi}{4} = \frac{\pi}{2} \cdot (2 + \frac{\pi}{4}) \cdot (1 = \frac{2\pi}{4} + \frac{\pi}{4} = \dots$$

4
$$\arcsin(-\frac{\sqrt{3}}{2})-2 \arcsin(-\frac{\pi}{3})-2\cdot 0=...$$

$$3\arcsin\frac{\sqrt{2}}{2} - 2\arcsin(-1) = 3 \cdot \frac{\pi}{4}$$

$$2 \cdot (\frac{\pi}{2}) = \frac{3\pi}{4} + \frac{2\pi}{2} = \frac{3\pi}{4} + \pi = \dots$$

$$\arcsin \frac{1}{2} - \arcsin(-\frac{1}{2}) = \frac{\pi}{6} - (\dots) = \dots$$

II. Вычислить:

- 1) $2 \arcsin \frac{\sqrt{3}}{2} + 3 \arcsin \left(-\frac{1}{2}\right) = \underline{\hspace{1cm}}$
- 2) $\arcsin \frac{1}{\sqrt{2}}$ -4 $\arcsin 1$ =
- 3) 5 arcsin($-\frac{1}{2}$)+ arcsin(-1)=_____
- 4) $\arcsin(-1) + \arcsin(-\frac{1}{2}) + \arcsin(-\frac{\sqrt{2}}{2}) + \arcsin(\frac{\sqrt{3}}{2})$

III. Выполнить по аналогии:

$$\sin(\arcsin\frac{\sqrt{3}}{2}) = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

$$tg(2 \arcsin \frac{1}{2}) = tg(2 \cdot \frac{\pi}{6}) = tg \frac{\pi}{3} = \sqrt{3}$$

$$\arcsin(\sin\frac{2\pi}{3})$$
=[свойство3 $\arcsin(\sin\alpha)$ = α]= $\frac{2\pi}{3}$
 $\sin(\arcsin\frac{\sqrt{2}}{2})$ =
 $\gcd(4\arcsin\frac{\sqrt{2}}{2})$ =
 $\gcd(2\sin\frac{\pi}{6})$ =

Домашняя работа

Задание 1. Найдите ошибку:

Тема 6. Решение простейших тригонометрических уравнений

Запомни!

Уравне-	Общее	Частные случаи		
ние	решение	a = -1	a = 0	a=1
$\sin x = a$,	$x = (-1)^n \arcsin a + \pi a$	$x = -\frac{\pi}{2} + 2\pi n$	$x = \pi n$	$x = \frac{\pi}{2} + 2\pi n$
$ a \le 1$		2		2
$\cos x = a$,	$x = \pm \arccos a + 2\pi a$	$x = \pi + 2\pi r$	$r = \frac{\pi}{1 + \pi n}$	$x = 2\pi n$
$ a \le 1$			2	
$\operatorname{tg} x = a$	$x = \arctan a + \pi n$	π	$x = \pi n$	$x = \frac{\pi}{4} + \pi n$
$a \in (-\infty, \infty)$		$x = -\frac{1}{4} + nn$		4
ctg x = a,	$x = \operatorname{arcctg} a + \pi$	$n_{r} = \frac{3\pi}{1+\pi n}$	$x = \frac{\pi}{m} + \pi n$	$x = \frac{\pi}{1} + \pi n$
$a \in (-\infty, \infty)$)	$\frac{\lambda - 1}{4}$	$\frac{x-1}{2}$	4

Практическая работа

1)
$$\cos 2x = 0,26$$
 6) $3\sin^2 x - 4\sin x \cdot \cos x + \cos^2 x = 0$
2) $ctg\left(\frac{x}{2} + 10^\circ\right) = 4,2$ 7) $3\sin 2x = 2\cos x$
3) $\sin \frac{x}{3} = -0,09$ 8) $\cos^2\left(\frac{\pi}{2} + x\right) + 2\sin\left(\frac{\pi}{2} + x\right) + 2 = 0$
4) $tg\left(2x - \frac{\pi}{5}\right) = 0$ 9) $\cos x + 12\sin x = 9$
5) $\sin(2-3x) = 0,098$ 10) $\sin(20^\circ + x) + \cos(70^\circ + x) = 1$

1)
$$\sin \frac{x}{3} = 0,78$$

6)
$$\cos^2\left(\frac{3}{2}\pi + x\right) + 2\cos(\pi - x) + 2 = 0$$

$$2)\cos\left(\frac{x}{3} + 20^\circ\right) = 0.87$$

$$7)3\sin 2x = 2\cos x$$

3)
$$tg \frac{x}{3} = -0.09$$

8)
$$4 \sin x \cdot \cos x \cdot \cos 2x = 1$$

$$4)ctg\left(2x-\frac{\pi}{5}\right)=0$$

$$9)\cos x + 12\sin x = 9$$

$$5)\sin(2-3x) = 0.012$$

10)
$$\sin(20^{\circ} + x) + \cos(50^{\circ} + x) = 1$$

Самостоятельная работа

Задание 1. Решите тригонометрические уравнения:

1)
$$ctg \frac{x}{2} = 1,8$$

6)3
$$\sin^2\left(\frac{3}{2}\pi + x\right) - \sin(\pi - x) + 1 = 0$$

$$2)\cos\left(\frac{x}{2}-10^{\circ}\right)=0.84$$

$$7)3\sin x - 5\cos x = 0$$

$$3)\sin 5x = -0.56$$

8)
$$\cos x - \cos 3x = \sin 2x$$

$$4)tg\left(\frac{\pi}{4} + 3x\right) = -1$$

$$9)8\sin x + \cos x = 4$$

$$5)\sin(x-1,2) = 0,112$$

$$10)\cos^4 x - \sin^4 x = -0.5$$

Домашняя работа

Задание 1. Решите тригонометрические уравнения:

1)
$$ctg \frac{x}{5} = 0.35$$

6)2 sin²
$$(\pi + x) + 5 sin \left(\frac{3}{2}\pi - x\right) = 0$$

$$2)\sin(50^{\circ} + 2x) = -0.68$$

$$7)\cos^2 x - 3\sin x \cdot \cos x + 1 = 0$$

$$3)\cos 3x = 0.84$$

8)
$$\sin 2x \cdot tgx = 1$$

$$4)\sin\left(\frac{x}{2} - \frac{\pi}{4}\right) = 0$$

9)15 sin
$$x + 10 \cos x = 12$$

$$5)tg\left(\frac{x}{2}-1,8\right)=0,208$$

$$10)\sin\left(50^\circ - x\right) = \cos\left(50^\circ + x\right)$$

Задание 2 (сложный уровень). Решите тригонометрические уравнения:

$$\cos(\frac{x}{2}-1) = \frac{\sqrt{3}}{2};$$

$$3\cos(2-\frac{x}{5}) = \frac{3}{2}$$

$$\sin\left(x - \frac{1}{2}\right) = 0.5;$$

$$2 2$$

$$3\cos(2-\frac{x}{5}) = \frac{3}{2};$$

$$\sin\left(x-\frac{1}{2}\right) = 0.5;$$

$$4\sin\left(\frac{2x}{3}+1\right) = 2\sqrt{2};$$

$$tg(2x+3) = \sqrt{3};$$

$$3tg\left(\frac{x}{4}-4\right) = \sqrt{3};$$

$$6ctg(1-3x) + 2\sqrt{3} = 0;$$

$$\frac{1}{3}ctg\left(\frac{x}{3}-4\right) = 5.$$

$$tg(2x+3) = \sqrt{3};$$

$$3tg\left(\frac{x}{4} - 4\right) = \sqrt{3}$$

$$6ctg(1-3x) + 2\sqrt{3} = 0;$$

$$\frac{1}{3}ctg\left(\frac{x}{3}-4\right) = 5.$$

Тема 7. Решение тригонометрических неравенств

Запомни!

Вид неравенства	Множество решений неравенства
sinx > a (a <1)	x (arcsin a + $2\pi n$, π - arcsin a + $2\pi n$), nZ
sin x < a (a <1)	x (-π - arcsin a + 2πn, arcsin a + 2πn), nZ
cos x > a (a <1)	x (-arccos a + 2πn, arccos a + 2πn), nZ
cos x < a (a <1)	x (arccos a + 2πn, 2π - arccos a + 2πn), nZ
tg x > a	x (arctg a + π n, π /2 + π n), nZ
tg x < a	x (-π/2 + πn, arctg a + πn), nZ
ctg x > a	x (πn, arcctg a + πn), nZ
ctg x < a	x (arcctg a + πn, π + πn), nZ

Тригонометрические неравенства могут быть решены по следующему общему правилу.

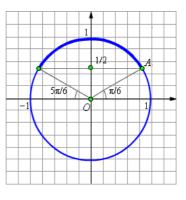
- 1. Найти область допустимых значений неизвестной (ОД3).
- 2. Записать соответствующее уравнение, заменив знак неравенства знаком равенства.
- 3. Решить уравнение, полученное в предыдущем пункте.
- 4. На числовой оси отметить ОДЗ, корнями уравнения разбить ОДЗ на промежутки.

- 5. На каждом интервале выбрать одну пробную точку и подставить ее в исходное неравенство. Если неравенство выполняется, то данный интервал необходимо включить в ответ. Если неравенство не выполняется, то интервал следует исключить из рассмотрения.
- 6. Сделать отбор характерных для неравенства точек корней уравнения и концов промежутков ОДЗ. Если исходное неравенство нестрогое, то корни уравнения следует записать в ответ, в противном случае отбросить. Концы промежутков ОДЗ проверить подстановкой в исходное неравенство. Подходящие из них включить в ответ.

Практическая работа

Пример 1:Решить тригонометрическое неравенство:

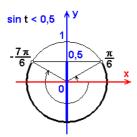
$$\sin x \ge \frac{1}{2}.$$


Решение

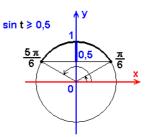
Нарисуем тригонометрическую окружность и отметим на ней точки, для которых ордината

превосходит

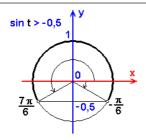
Для $x \square [0; 2\pi]$ решением данного неравенства будут

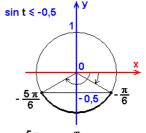

$$\pi \in \left[\frac{\pi}{6}; \frac{5\pi}{6}\right].$$

Ответ.


Ясно также, что если некоторое число х будет отличаться от какого-нибудь числа из указанного интерва-

$$n\in\mathbb{Z}$$
, ла на $2\pi n$, то $\sin x$ также будет не меньше . Следовательно, к концам найденного отрезка решения нужно просто добавить $2\pi n$, где Окончательно, получаем, что решениями исходного неравенства будут все $\mathbf{z}\in\left[\frac{\pi}{6}\oplus 2\pi n;\,\frac{5\pi}{6}\oplus 2\pi n;\,\frac$


Тригонометрические неравенства


$$2\pi n - \frac{7\pi}{6} < t < \frac{\pi}{6} + 2\pi n; n \in Z$$

$$2\pi n + \frac{\pi}{6} \leqslant t \leqslant \frac{5\pi}{6} + 2\pi n; \ n \in Z$$

 $2\pi n - \frac{\pi}{6} < t < \frac{7\pi}{6} + 2\pi n; n \in Z$

 $2\pi n - \frac{5\pi}{6} \le t \le -\frac{\pi}{6} + 2\pi n; n \in Z$

Задание 1: Решить тригонометрические неравенства:

$$-2\sin x < \sqrt{3}$$

 $\frac{1}{-2\cos x < \sqrt{2}}$

$$\cos t > \frac{\sqrt{2}}{2}$$

cos t	<	_	1 2

 $\cos t > \frac{\pi}{3}$

 $\cos t < -\frac{\sqrt{3}}{2}$

 $tgt \ge \sqrt{3}$

 $tgt < \frac{1}{\sqrt{3}}$

tgt < −1

 $sint < -\frac{\sqrt{3}}{2}$

Самостоятельная работа

Задание 1: Решить тригонометрические неравенства:

$$\sin\frac{x}{2} < -\frac{\sqrt{3}}{2}$$

tg5x > 1

 $\sqrt{2}\sin(\frac{\pi}{4} + \frac{x}{2}) \ge 1$

 $2\cos(4x-\frac{\pi}{6})>\sqrt{3}$

 $\cos(\frac{x}{2} + \frac{\pi}{4}) \ge \frac{\sqrt{2}}{2}$

 $\cos 3x > -\frac{\sqrt{3}}{2}$

Домашняя работа

Задание 1. Решите неравенства:

$$\operatorname{tg}\left(\pi * \frac{x}{3}\right) * 1 \ge 0.$$

$$\left(\pi + \frac{x}{3}\right) + 1 \ge 0$$

$$\sin x \ge -\frac{1}{2}$$

$$\cos\left(2x-\frac{\pi}{6}\right) \ge -\frac{1}{\sqrt{2}}$$

$$\sin 2x > \frac{\sqrt{2}}{2}$$

$$2sin^2(\frac{x}{2}) \le \frac{1}{2}$$

Тема 8. Сложные тригонометрические уравнения, неравенства, системы

Запомни!

Вид уравнения	Способ решения
$asin^2x + bsinx + c = 0$	Замена переменной на
$atg^2x + btgx + c = 0$	$sinx = t tg x = t_{\text{ИЛИ}}$
$a\cos^2x + b\cos x + c = 0$	$\cos x = t$, дальше решаем
	как стандартное квадрат-
	ное уравнение
atgx + bctgx + c = 0	$ctgx = \frac{1}{tgx}$
asinx + bcosx = 0	Делим обе части уравнения
	на sinx или cos x , получим
	atgx+b=0
$asin^2x + bsinxcosx + ccos^2x =$	Q Делим обе части уравнения
	на sin²x _{или} cos²x , полу-
	чим
	$atg^2x + btgx + c = 0$ _{ИЛИ}
	$actg^2x + bctgx + c = 0$
Остальные уравнения решаю	тся с помощью тригономет-
рических формул	

Практическая работа

1. Решите уравнения:

$$2\sin^2 x + \sin x - 1 = 0$$

$$4\cos^2 x + 8\cos x + 3 = 0$$

2. Найдите ошибку:

$$tg^2x - 10tgx + 21 = 0$$

Pешение: решаем квадратное уравнение относительно функции tgx.

Пусть tgx = t, тогда

$$t^2 - 10t + 21 = 0$$

$$D = 100 - 84 = 16$$

$$t_{1,2} = \frac{10 \pm 4}{2}$$
; $t_1 = 7$; $t_2 = 3$

3. Решить уравнения:

$$\sin 2x = 1 - 3\cos^2 x$$

$$\cos 5x \cos 2x - \cos 7x \cos 4x = 0.$$

$$\sqrt{3}\sin x + \cos x = 2.$$

Самостоятельная работа

Вариант 1.	Вариант 2.	
1) Уравнения сводимые к алгебраическим.		
$\cos 2x + \sin^2 x + \sin x = 0.25$	$3\cos 2x - 5\cos x = 1$	
2) Разложение н	а множители.	
$3\sin^2 x - \sqrt{3}\sin x \cos x = 0$	$3\cos^2 x + \sqrt{3}\sin x \cos x = 0$	
3) Введение новой переменной.		
$3\cos^2 x - 5\sin^2 x - \sin 2x = 0$	$\cos 2x + \cos^2 x + \sin x \cos x = 0$	
4) Введение вспомогат	пельного аргумента.	
$\sin x - \sqrt{3}\cos x = 2$	$\sqrt{2}\cos x + \sqrt{2}\sin x = 1$	
5) Уравнения решаемые с помощью формул сложения.		
$\sin x + \sin 3x = 4\cos^3 x$	$\cos 3x - \cos 5x = \sin 4x$	

Домашняя работа

1. Решите неравенства:

$2sin^2x +$	$3\cos x =$	0

$$2\cos^2 x + \sin x + 1 = 0$$

$$\cos^2 x + 3\sin x = 3$$

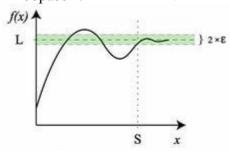
$$4\cos x = 4 - \sin^2 x$$

$$3tg^2x + 2tgx - 1 = 0$$

$$2tg^2x + 3tgx - 2 = 0$$

$$-7\cos^2 x + 9\sin x\cos x - 2\sin^2 x = 0$$

$$-\cos^2 x - \sin x \cos x + 2\sin^2 x = 0$$


$$\sin 2x + 4\cos^2 x - 1 = 0$$

$$sin2x - cosx = 0$$

Тема 9. Понятие предела. Замечательные пределы

Запомни!

Чисто b, к которому стремится функция при стремлении x к числу a, называется пределом функции. Записывается $\lim_{x\to a} f(x) = b$ это следующим образом: $\lim_{x\to a} f(x) = b$.

Свойства пределов

2)
$$\lim_{x\to a} (f(x) \pm g(x)) = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x);$$

3)
$$\lim_{x \to a} f(x) \cdot g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x);$$
$$\lim_{x \to a} C \cdot f(x) = C \cdot \lim_{x \to a} f(x), C - \text{const.};$$

4)
$$\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}; \lim_{x\to a}g(x)\neq 0.$$

Правила вычисления пределов

 $\lim_{x \to x_0} f(x) = f(x_0)$ 3то значит: всюду, где функция определена предел функции можно вычислить простой подстановкой вместо х х=а.

$$\lim_{\text{Пример: } x \to 1} \frac{2x^2 + 3}{x + 1} = \frac{2 \cdot 1^2 + 3}{1 + 1} = \frac{5}{2}$$

2 Чтобы раскрыть неопределённость вида $\stackrel{-}{\infty}$, следует и числитель и знаменатель дроби разделить почленно на х в высшей степени.

$$\lim_{x \to \infty} \frac{x-3}{2x+5} = (\frac{\infty}{\infty}) = ? = \lim_{x \to \infty} \frac{1-\frac{3}{x}}{2+\frac{5}{x}} = \frac{1-0}{2+0} = \frac{1}{2}$$

Пример:

3. Чтобы раскрыть неопределённость вида $\overline{0}$, нужно числитель и знаменатель дроби разложить на множители и скобку (x-a) сократить.

Пример:
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 2x} = (\frac{0}{0}) = ?$$

Разложение квадратного трёхчлена на множители- $\alpha x^2 + bx + c = \alpha(x - x_1)(x - x_2)$

a)
$$x^2-5x+6=0$$
 $x^2+px+q=0$
 $x_1=2$ $x_1+x_2=-p$
 $x_2=3$ $x_1+x_2=q$
 $x_2-5x+6=(x-2)(x-3)$

$$\lim_{x \to 2} \frac{(x-2)(x-3)}{x(x-2)} = \lim_{x \to 2} \frac{x-3}{x} = \frac{2-3}{2} = -\frac{1}{2}$$

4. Чтобы раскрыть неопределённость вида $\overline{0}$ при вычислении предела иррациональной функции (корни есть), нужно числитель и знаменатель дроби умножить на сопряжённые выражения. И затем воспользоваться формулой: $a^2-b^2=(a-b)\cdot(a+b)$.

Пример:

$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5} = (\frac{0}{0}) = ? = \lim_{x \to 5} \frac{(\sqrt{x-1}-2)(\sqrt{x-1}+2)}{(x-5)(\sqrt{x-1}+2)} = \lim_{x \to 5} \frac{x-1-4}{(x-5)(\sqrt{x-1}+2)} = \lim_{x \to 5} \frac{x-5}{(x-5)(\sqrt{x-1}+2)} = \lim_{x \to 5} \frac{1}{\sqrt{x-1}+2} = \frac{1}{4}$$

Вычислению многих пределов помогает использование двух так называемых замечательных пределов.

Первый замечательный предел: $\lim_{x\to 0} \frac{\sin x}{x} = 1$ или $\lim_{x\to \infty} = \frac{x}{\sin x} = 1$ (раскрывается неопределенность вида $\frac{0}{0}$)

Второй замечательный предел:
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$$
 где $e\approx 2,72$

 $\lim_{x\to 0}(1+\frac{1}{x})x=e$ (раскрывается неопределенность вида 1^{∞})

Пример 1:
$$\lim_{x \to 0} \frac{x}{\sin 3x} = (\frac{0}{0}) = ? = \lim_{x \to 0} \frac{3 \cdot x}{3 \cdot \sin 3x} = \frac{1}{3} \lim_{x \to 0} \frac{3x}{\sin 3x} = \frac{1}{3} \cdot 1 = \frac{1}{3}$$

$$\lim_{n\to\infty} (1+\frac{2}{n})^{3n} = 1^{\infty} = ? = \lim_{x\to\infty} \left[(1+\frac{2}{n})^{\frac{n}{2}} \right]^{\frac{2}{n}})^{3n} = \lim_{n\to\infty} \left[(1+\frac{2}{n})^{\frac{n}{2}} \right]^{6} = e^{6}.$$

При вычислении пределов, в частности при раскрытии неопределённости вида $\frac{0}{0}$, применяется **таблица** эквивалентности:

1.	$\sin x \sim x$	6.	$\ln(1+x)\sim x$
2.	$\arcsin x \sim x$	7.	$\log_a x \sim \frac{x}{\ln a}$
3.	$tgx \sim x$	8.	$a^x - 1 \sim x \ln a$
4.	$arctgx \sim x$	9.	$e^x - 1 \sim x$
5.	$1-\cos x \sim \frac{x^2}{2}$	10.	$(1+x)^m - 1 \sim mx$

Практическая работа

Задание 1. Найти пределы:

$$\lim_{x \to \infty} \frac{4x^3 + 3x^2 - 7x + 15}{2x^3 + 5x + 3}$$

.____

$$\lim_{x \to \infty} \frac{x^3 + 11x^2 + x + 5}{2x^4 + 3x^2 + 3}$$

$$\lim_{x \to \infty} \frac{x^5 + 2x^2 + 3x + 2}{2x^4 + 7x^2 + 1}$$

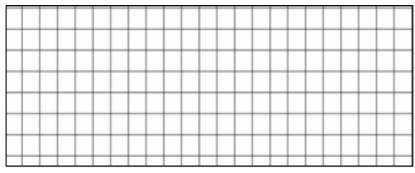
$$\lim_{x \to 1} \frac{x^2 + 4x - 5}{x^2 - 4x + 3} = \underline{\hspace{1cm}}$$

$$\lim_{x \to 1} \frac{x^2 + 5x - 6}{2x^2 + 3x - 5}$$

$$\lim_{x \to 3} \frac{4x^2 - 11x - 3}{x - 3}$$

$$\lim_{t \to 2} \frac{t^2 - 6t + 8}{t^2 + t - 6}$$

$$\lim_{x \to -3} \frac{x^2 - 4x - 21}{3x^2 + 8x - 3}$$


$$\lim_{x \to -3} \frac{x^2 - 4x - 21}{3x^2 + 8x - 3}$$

$$\lim_{x \to 0.5} \frac{2x^2 - 7x - 4}{6x^2 + 7x + 2}$$

Самостоятельная работа

Задание 1. Вычислить пределы:

a)
$$\lim_{x \to 7} \frac{3x+5}{x-5}$$
; 6) $\lim_{x \to 5} \frac{3x+5}{x-5}$; B) $\lim_{x \to \infty} \frac{\sin x}{x}$; r) $\lim_{x \to 0} \left(x \cos \frac{1}{x}\right)$.

Задание 2. Найти пределы:

a)
$$\lim_{x\to 1} \frac{2x^2-x-1}{(x-1)^2}$$
;

6)
$$\lim_{x\to 2} \frac{\sqrt{x+2} - \sqrt{6-x}}{x^2 - 4}$$
;

B)
$$\lim_{x\to 1} \frac{\sqrt{x}-1}{\sqrt[3]{x}-1}$$
.

<u>Домашняя работа</u>

Задание 1. Найти пределы:

 $\lim_{x \to 3} \frac{x^2 - 6x + 7}{x^2 + x + 8}.$

2 . . .

 $\lim_{x \to 5} \frac{x^2 - 6x + 5}{x^2 - 25}.$

 $\lim_{x \to -2} \frac{x+2}{x^3+8}.$

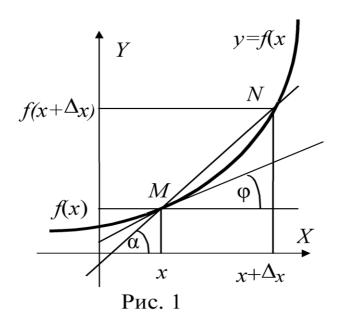
2 . 2 . 2

 $\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1}.$

 $\lim_{x \to -2} \frac{x+2}{2x^2 + x - 6}.$

 $\lim_{x\to 0} \frac{\sin x}{tgx}.$

Тема 10. Понятие непрерывности. Приращение функции. Производная функции


Запомни!

Приращение функции и аргумента

∆х = x - x, - приращение аргумента

$$\Delta f(x) = f(x) - f(x)$$

$$\Delta f(x) = f(x) + \Delta x - f(x)$$
— приращение функции

Основные правила дифференцирования

Функция	Производная
X ⁿ	nx ⁿ⁺¹
kx+b	k
С (постоянная)	0
u + v	u' + v'
uv	u'v + uv'
$\frac{u}{v}$	$\frac{u'v-uv'}{v^2}$
Cu	Cu'
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
sin x	cos x
tg x	$\frac{1}{\cos^2 x}$
ctg x	$\frac{-1}{\sin^2 x}$

Практическая работа

Задание 1. Найдите производные:

$$4' = \underline{\hspace{0.5cm}}; (-15)' = \underline{\hspace{0.5cm}}; (7,81)' \underline{\hspace{0.5cm}}; (\sqrt{2})' = \underline{\hspace{0.5cm}}; 9' = \underline{\hspace{0.5cm}}; (\sqrt{8})' = \underline{\hspace{0.5cm}}; (5/7)' = \underline{\hspace{0.5cm}}; (13x)' = \underline{\hspace{0.5cm}}; (101x)' = \underline{\hspace{0.5cm}}; (-56x)' = \underline{\hspace{0.5cm}}; (\sqrt{8}x)' = \underline{\hspace{0.5cm}}; (x^6)' = \underline{\hspace{0.5cm}}; (3x^4)' = \underline{\hspace{0.5cm}}; (x^{21})' = \underline{\hspace{0.5cm}}; (10x^4)' = \underline{\hspace{0.5cm}}; (-1/3x^3)' = \underline{\hspace{0.5cm}}; (5x^2 + 8x - 10)' = \underline{\hspace{0.5cm}}; (x^{21})' = \underline{\hspace{0.5cm}}; (3x + 5)' = \underline{\hspace{0.5cm}}; (5x^2 + 8x - 10)' = \underline{\hspace{0.5cm}}; (x^3 + 4x^{100} - 1)' = \underline{\hspace{0.5cm}}; (3x^4 + 7x^3 + 2x^2 + 1)' = \underline{\hspace{0.5cm}}; (3x^4 + 7x^3 +$$

Самостоятельная работа

Оценка знаний «3»	Оценка знаний «4»	Оценка знаний «5»
$(4x^2 - 3x)' =$	$(12x^3 - 6x^2)' =$	$(\frac{1}{4}x^4\sqrt{3}x^2+x)'=$
$(2x^3-3x^2+5x+15)'$	$(5x^4+3x^3-4x^2+x8)'=$	$(\frac{7}{8}x^8 + \frac{1}{3}x^3 - \frac{1}{2}x^2 + x8)'$
$(2x(x^2+6))'=$	((7x+3)(8x4))'=	$((3x^2-5x+1)(2x+9))'$
((3x+5)/(8x4))'=	$((3x^3-8)/(2x+4))'=$	$((7x^2-3x+4)/(5x+3))'=$

Производные тригонометрических функций

Установи соответствие

(2sinx+3)'
(4 cosx+x²)'
(tgx+7)'
(ctgx+3x²+8)'
(7 sinx-1/7)'
(tgx+ 2sinx)'
((tgx)/3)'
(√3 cosx-x⁵+0,3x)'
(3 cosx+15x)'
(sinx/ cosx)'

 $-\sqrt{3} \sin x - 5x^4 + 0,3$ $1/3 \cos^2 x$ $-3 \sin x + 15$ $-1/\sin^2 x + 6x$ $1/2 \sin x^2 x + 6$ $-4 \sin x + 2x$ $1/\cos^2 x$ $3 \cos x$ $2/\cos^2 x + 6$

Домашняя работа

Вариант 1

- 1. Найдите производную функций:
- 1) $f(x)=9x^8$; 2) $f(x)=\frac{1}{3}x^{-9}$; 3) $f(x)=8\cdot\frac{1}{x}$; 4) $f(x)=-18\sqrt{x}$;
- 5) f(x) = -54;
- 6) $f(x)=x^{14}-x^{12}+3x^9+x^3-9x^2+5x$;
- 7) f(x)=2tg x + cos x sin x;
- 8) $f(x)=\cot x + x^5 \sqrt{5}$; 9) $f(x)=\sin x + \frac{3}{x} 4x$; 10) $f(x)=x^{10} \cdot (7x + 15)$;
- 11) f(x)=(13x 8)(8 + 7x); 12) $f(x)=(\cos x x) \cdot 6x$;
- 13) $f(x) = \frac{1-7x}{5x+4}$;

14)
$$f(x) = \frac{2x^4 - x^8 - x}{\tan x}$$
; 15) $f(x) = \frac{3x^5 - 1}{\sqrt{x}}$; 16) $f(x) = (8x + 6)^7$;

17)
$$f(x) = \sqrt{x^{15} + 2x^2 + 3}$$
; 18) $f(x) = \frac{1}{\cot x}$; 19) $f(x) = \sin 5x$;

20)
$$f(x) = \cos(\frac{\pi}{3} - 2x)$$
; 21) $f(x) = 10x^2 - \frac{1}{x^3 - 2x}$.

2. Дана функция $f(x)=-3x^4+2x^2+13$.

Найдите f'(-4), f' $\left(\frac{1}{2}\right)$.

Вариант 2

- 1. Найдите производную функций:
- 1) $f(x)=7x^6$; 2) $f(x)=-\frac{1}{5}x^{-11}$; 3) $f(x)=6\cdot\frac{1}{x}$; 4) $f(x)=16\sqrt{x}$;

5)
$$f(x) = \frac{9}{20}$$
; 6) $f(x) = 3x^{12} - x^{10} + 4x^7 + x^5 - x^2 + \sqrt{3}x$;

7)
$$f(x)=\cot x + 2\tan x - \sin x$$
; 8) $f(x)=\cos x + x^7 - 0.5$;

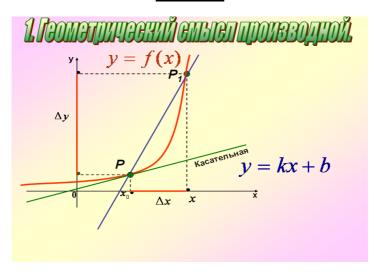
9)
$$f(x)=tg x + \frac{5}{x} - 6x$$
; 10) $f(x)=x^8 \cdot (6+4x)$;

11)
$$f(x)=(5x - 8)(5 + 9x)$$
; 12) $f(x)=(x - ctgx) \cdot 3x$;

13)
$$f(x) = \frac{8x-3}{2+5x}$$
; 14) $f(x) = \frac{4x^6-x^5+x}{\sin x}$; 15) $f(x) = \frac{x^7-5}{3\sqrt{x}}$;

16)
$$f(x)=(10-9x)^9$$
; 17) $f(x)=\sqrt{x^{17}-3x^3+9}$;

18)
$$f(x) = \frac{1}{\cos x}$$
; 19) $f(x) = tg 7x$; 20) $f(x) = ctg(\frac{\pi}{6} + 4x)$;


21)
$$f(x) = \sqrt{15x^2 + 3x} - 9x^3$$
.

2. Дана функция $f(x) = -5x^4 + 4x^2 + 15$.

Найдите f'(4), $f'\left(-\frac{1}{3}\right)$.

Тема 11. Касательная к графику функции. Приближенные вычисления

Запомни!

Производная в точке х₀ равна угловому коэффициенту касательной к графику функций у=f(х) в этой точке.

K = угловой коэффициент, равный тангенсу угла прямой с осью <math>OX

$$K=f'(x_0)=tg\alpha$$
.

 $y=y(x_0)+y'(x_0)(x-x_0)$ - уравнение касательной

Если точка движется вдоль оси Ox и ее координата изменяется по закону x(t), то меновенная скорость точки V(t)=x'(t)

$$V=S''(t)$$
, а ускорение а $(t)=V''(t)=x'''(t)=S'''(t)$

Практическая работа

1. Найдем угловой коэффициент касательной к графику
функции $y=f(x)$ в точке с абсциссой (x_0) :

Решение: $f(x) = x^2$, $x_0 = -4$

$$K= f'(x_0); f'(x)=2x; f'(x_0)=f'(-4)=2\cdot(-4)=-8, \text{ т.e. } κ=-8$$

1. f(x)=1/x, B $x_0=-1/3$ ______

2.
$$f(x) = \sin x$$
, $B(x_0) = 1/3$

3. $f(x)=3x^3-2x+1$, B(x)=1

2. Найдем тангенс угла касательной к кривой y=1/2 x^2 с осью Ох, в точке $x_0=1$.

Решение: $tg\alpha=y'(x_0)$; $y'(x)=(1/2 x^2)'=x$; $y'(x_0)=y'(1)=1$, т.е. $tg\alpha=1$; $\alpha=\sqrt[9]{4}$

1. y=
$$x^2$$
 при $x_0 = \sqrt{3/2}$

2.
$$f(x)=1/3 x^3, x_0=1$$

3. Найдем уравнение касательной к графику функции у=1/3 x^2 -2в точке с абсциссой x_0 =3.

Решение: Находим уравнение касательной

$$y=y(x_0)+y'(x_0)(x-x_0)$$

$$y(x_0)=y(3)=1/3 \cdot 3^2-2=1;$$
 $y'(x)=(1/3 x^2-2)'=2/3 x;$ $y'(x_0)=y'(3)=2/3 \cdot 3=2 y=1+2(x-3)=1+2x-6=2x-5;$ т.е. $y=2x-5-y$ равнение касательной

ние касательной

A.
$$f(x)=3x^2-5x+4$$
, B $x_0=1$ _____

Б.
$$y=1/2$$
 x^2+1 , в $x_0=2$ _____

Тело движется по закону $S(t)=3t^2-5t+8$. Найдем скорость и ускорение движения тела, и вычислить их значения при t=1.

Решение: V(t) = S'(t) = 6 t-5;

$$V(1)=6\cdot 1-5=1$$
 $a=V'(t)=(6 t-5)'=6$

Ответ: V=1, a=6

1) Определить скорость и ускорение тела, движущегося по закону $S(t) = t^2 + 2$ в момент времени t = 5:

2) Определить скорость и ускорение тела, движущегося по закону $S(t) = 0.5t^3 + 2t^2 - 7t + 11$ в момент времени t = 2:

Самостоятельная работа

Материальная точка движется по закону $s(t) = \frac{9}{2}t^2 - 7t + 6 \, (\text{м}). \ \, \text{В какой момент времени скорость}$ точки будет равна 12,8 м/с?

Найти угловой коэффициент касательной, проведённой к графику функции $y = \frac{5}{6}x^3 - 3x^2 + x - 2$ в точке с абсциссой $x_0 = -2$.

Материальная точка движется по закону $s(t) = \frac{13}{2}t^2 - 4t + 1 \text{(M)}.$ Чему равна скорость в момент времени 4c?

Укажите абсциссу точки графика функции $y=\frac{1}{4}x^2+2x-2 \ , \ \text{в которой угловой коэффициент касательной, проведённой к этому графику, равен -2.}$

Домашняя работа

Найдите производную функции: $y = x^{18} - 6x^5 + 4x + 24$.

Материальная точка движется по закону

 $s(t) = \frac{5}{2}t^2 - 4t + 1$ (м). В какой момент времени скорость точки будет равна 13,5 м/с?

Найти угловой коэффициент касательной, проведённой к графику функции $y=-\frac{5}{27}x^4+3x^2+5x-2$ в точке с абсциссой $x_0=-3$.

Найдите производную функции: $y = x^{18} + 4x^6 - 7,3x + 2$.

Материальная точка движется по закону

$$s(t) = \frac{7}{12}t^3 - 6t + 11$$
(м). Чему равна скорость в момент времени $t = 2$ с?

Укажите абсциссу точки графика функции $y = \frac{3}{4}x^2 + 5x - 2$, в которой угловой коэффициент касательной, проведённой к этому графику, равен - 4.

Тема 12. Производная сложной функции Запомни!

Если функция f имеет производную в точке x, a функция g имеет производную в точке y=f(x), то сложная функция h(x)=g(f(x)) также имеет производную в точке x:

$$h'(x)=g'(f(x))\cdot f'(x)$$

Практическая работа

Найдем производную сложной функции:

1.((2x+3)¹⁰⁰)'=2·100(2x+3)⁹⁹=200(2x+3)⁹⁹
2.(
$$\sqrt{3}x^2+1$$
)'=(1/2·(3x²+1))·(3x²+1)'=6x/(2· $\sqrt{3}x^2+1$)=3x/ $\sqrt{3}x^2+1$
y = (4x-9)⁷
y = (x/3 +2)¹²
y = (7-24x)¹⁰
y = cosx(5x-9)
y= sinx(7-2x)

Кроссворд по теме «Производная»

		-	-					9		
					7					
				5		1				,
					6		8		10	
	2	3				7				11
			4							
1	n		**		9			**		a
П	р	0	И	3	В	0	Д	Н	a	Я
				-					-	

- 1) Знак обозначения действия сложения.
- 2) Сумма длин всех сторон многоугольника.
- 3) Геометрическая фигура, состоящая из двух лучей.
- 4) Тригонометрическая функция.
- 5) Часть прямой, заключенная между двумя точками.
- 6) Равенство, содержащее переменную.
- 7) Сотая часть числа.
- 8) Единица измерения угла.
- 9) Сторона прямоугольного треугольника, лежащая против прямого угла.
- 10) Часть окружности, заключенная между двумя точками.
- 11) Одно из основных неопределяемых понятий стереометрии.

Самостоятельная работа

Найдите производные:
$y=x^3+\sqrt{2}$
$y=x^3+\sqrt{2}$ $y=3x^4-7x^3-x+1$
$y=7x^3-5x_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$
V=X-X+/
$y=(5x-2)\cdot(4x-1)$
y=(5x+2)(4x-1)
$y=(7x+5)\cdot(8x-4)$
$y=(3x^2-8)/(2x-4)$
y=3cosx
y=sin2x
y=sin2x y=1/2 sinx-x ⁵
y=5tgx
y=tg3x
y=3cosx+2
y=2x ⁵ -3cosx
Найти угловой коэффициент касательной в точке с абсцис-
сой х ₀ :
y=7x ³ -21x ² +18, при x ₀ =1
2 2
y=x ³ -2x ² +3x-6, при x ₀ =-1
y=sinx+cosx, при x ₀ =1/2
2 -
y=x ² /2+x, при x ₀ =1

Пусть S, пройденный телом за время t, выражается формулой. Определить скорость тела V. Вычислить значение
1
скорости при определенном значении t. $S(t) = 2t^3 - 5t^2 + 11t^2 - 2t^2 + 12t^2 - 2t^2 - $
$S(t)=2x^3-5x^2+11x-3$, при $t=2$
·
7() 772 11
S(t)=5,5t ² -8t+11, при t=2
S(t)=t ² +2, при t=10
Найти угол, образованный касательной к графику функции
B TOUKE X_0 :
у=x ⁶ -4x, при x ₀ =1
$f(x)$ = - x^5 -2 x^2 +2, при x_0 =-1
f(x)=10-cosx, при x ₀ =3π/2
Найти уравнение касательной к графику функции в точке с
абсциссой $x_0y=-1/3$ x^2+4 , при $x_0=3$
y=1/6 x ² +х-3, при х ₀ =3
J
y=x³-6x²+5, при x ₀ =1
, r
у=х-х ² +3, при х ₀ =2
J 2,

Домашняя работа

Запишите уравнение касательной, пров	ведённой к графику
функции $f(x) = \sqrt{x+3}$ в точке с абсци	$x_0 = -2$.

К графику функции $f(x) = 2\sin\frac{x}{2}$ в точке с абсциссой $x_0 = -\pi$ проведена касательная. Запишите её уравнение.

Тема 13. Применение производной. Приближенные вычисления

Запомни!

Для вычисления приближенного значения функции в точкех $_0$ используются формулы:

$$y pprox y(x_0) + y'(x_0) \Delta x$$
, где $\Delta x = x - x_0$
$$\sqrt{1 + \Delta x} pprox 1 + \frac{1}{2} \Delta x$$

$$(1 + \Delta x)^n pprox 1 + n \Delta x$$

Практическая работа

Пусть, например, требуется вычислить приближенное значение функции

 $f(x) = x^7 - 2x^6 + 3x^2 - x + 3$

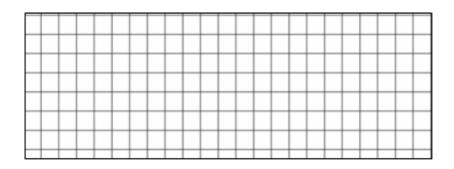
в точке x=2,02. Значение f в близкой к 2,02 точке $x_0=2$ находится легко: f(2)=13. График f в окрестности точки 2 близок к прямой $y=f(x_0)+f'(x_0)(x-x_0)$ — касательной к нему в точке с абсциссой 2. Поэтому $f(2,02)\approx y(2,02)$. Имеем $f'(x)=7x^6-12x^5+6x-1$, $f'(x_0)=f'(2)=75$ и $f(x)\approx y(x)=13+75\cdot 0,02=14,5$.

Вычисления на калькуляторе дают результат $f(2,02) \approx 14,57995$.

Если точка x_0 такова, что значения $f(x_0)$ и $f'(x_0)$ нетрудно вычислить, то формула (1) позволяет находить приближенные значения f(x) при x, достаточно близких к x_0 . Так, при вычислении значения $\sqrt{4,08}$ естественно взять в качестве x_0 число 4, так как 4,08 близко к 4 и значения $f(x_0) = \sqrt{x_0}$ и $f'(x_0) = \frac{1}{2\sqrt{x_0}}$ при $x_0 = 4$ найти нетрудно: $f(4) = \sqrt{4} = 2$, $f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$. По формуле (1) при $\Delta x = 0,08$ получаем:

$$\sqrt{4,08} \approx 2 + \frac{1}{4} \cdot 0.08 = 2.02.$$

Например, $1,001^{100} = (1+0,001)^{100} \approx 1+100\cdot 0,001 = 1,1$. Значение $1,001^{100}$, вычисленное на калькуляторе, равно

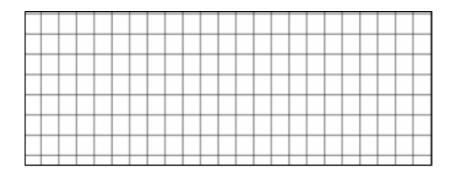

Значение 1,001¹⁰⁰, вычисленное на калькуляторе, равно 1,10512.

Пример 3. Для вычисления значения $\frac{1}{0,997^{30}}$ удобно воспользоваться формулой (3) при n=-30, $\Delta x=-0,003$:

$$\frac{1}{0.997^{30}} = (1 - 0.003)^{-30} \approx 1 + (-30) \cdot (-0.003) = 1 + 0.09 = 1.09.$$

Самостоятельная работа

- Вычислите с помощью формулы (1) приближенные значения функции f в точках x₁ и x₂:
 - a) $f(x)=x^4+2x$, $x_1=2,016$, $x_2=0.97$;
 - 6) $f(x)=x^5-x^2$, $x_1=1,995$, $x_2=0,96$;
 - B) $f(x)=x^3-x$, $x_1=3.02$, $x_2=0.92$;
 - r) $f(x)=x^2+3x$, $x_1=5{,}04$, $x_2=1{,}98$.


Вычислите с помощью формул приближенных вычислений:

. a) tg 44°; б) cos 61°; в) sin 31°; г) ctg 47°.

. a)
$$\cos(\frac{\pi}{6} + 0.04)$$
; 6) $\sin(\frac{\pi}{3} - 0.02)$;

B)
$$\sin(\frac{\pi}{6} + 0.03)$$
; r) $tg(\frac{\pi}{4} + 0.05)$.

. a)
$$\frac{1}{1,003^{20}}$$
; 6) $\frac{1}{0,996^{40}}$; B) $\frac{1}{2,0016^3}$; r) $\frac{1}{0,994^5}$.

Домашняя работа

ть:				
	ть:	ть:	ть:	ть:

Тема 14. Исследование функций с помощью производной

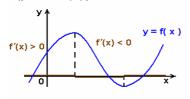
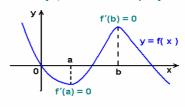
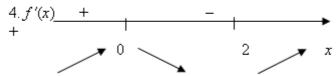

Запомни!

Схема исследования функции


- 1. Найти область определения функции:
- Исследовать функцию на четность, нечетность, периодичность;
- Найти точки пересечения графика функции с осями координат;
- Исследовать функцию на монотонность, то есть найти промежутки возрастания и убывания функции;
- Найти точки экстремума и экстремальные экзнения функции;
- 6. Построить график функции.

Применение производной к исследованию функций

Достаточный признак возрастания (убывания) функции


Необходимые условия существования экстремума

Достаточные условия существования экстремума

 x_0 - точка максимума x_{01} - точка минимума x_{01} - точка минимума

$$y = x^3 - 3x^2$$
1. $Д(y) = R$,т.к. многочлен.
2. $f'(x) = 3x^2 - 6x$.
3. $f'(x) = 0$: $f'(x)$ не существует: $3x^2 - 6x = 0$, таких х нет. $3x(x - 2) = 0$, $3x = 0$, $x - 2 = 0$, $x = 0$, $x = 2$.

5.
$$f'(-1) = 3(-1)^2 - 6(-1) = 3 + 6 = 9 + f'(1) = 3 \cdot 1^2 - 6 \cdot 1 = 3 - 6 = -3 - f'(3) = 3 \cdot 3^2 - 6 \cdot 3 = 27 - 18 = 9 + 6.$$
 $f'(x) > 0$, r.e. $+$

$$f'(x) \le 0$$
, т.е. — \searrow Ответ. Возрастает на $(-\infty;0)$ U $(2;+\infty)$

Убывает на (0;2).

Практическая работа

Найдите промежутки возрастания и убывания функций (279-281).

279. a)
$$f(x) = 3 - \frac{1}{2}x$$
;

6)
$$f(x) = -x^2 + 2x - 3$$
;

B)
$$f(x) = 4x - 5$$
;

B)
$$f(x)=4x-5$$
; r) $f(x)=5x^2-3x+1$.

280. a)
$$f(x) = -\frac{2}{x} + 1;$$
 6) $f(x) = x^2(x-3);$

6)
$$f(x) = x^2(x-3)$$
;

B)
$$f(x) = \frac{x-3}{x}$$
;

r)
$$f(x) = x^3 - 27x$$

B)
$$f(x) = \frac{x-3}{x}$$
; r) $f(x) = x^3 - 27x$.
281. a) $f(x) = 12x + 3x^2 - 2x^3$; 6) $f(x) = 4 - x^4$;

6)
$$f(x) = 4 - x^4$$

B)
$$f(x) = x(x^2 - 12)$$
; r) $f(x) = \frac{3}{x^2}$.

r)
$$f(x) = \frac{3}{r^2}$$

Пример 3. Найдем промежутки возрастания (убывания) функции

$$f(x) = -2x + \sin x$$
.

288. Найдите критические точки функции:

a)
$$f(x)=4-2x+7x^2$$
; 6) $f(x)=1+\cos 2x$;

6)
$$f(x) = 1 + \cos 2x$$

$$f(x) = x - 2\sin x;$$

B)
$$f(x) = x - 2 \sin x$$
; $f(x) = 4x - \frac{x^3}{3}$.

Самостоятельная работа

Найти промежутки возрастания и убывания функций:

283. a)
$$f(x) = x^3 + 3x^2 - 9x + 1$$
; 6) $f(x) = 4x^3 - 1.5x^4$;
B) $f(x) = 2 + 9x + 3x^2 - x^3$; r) $f(x) = x^4 - 2x^2$.

6)
$$f(x) = 4x^3 - 1.5x^4$$
;

B)
$$f(x) = 2 + 9x + 3x^2 - x^3$$
;

r)
$$f(x) = x^4 - 2x^2$$

284. a)
$$f(x) = 2 - \frac{4}{0.5x - 1}$$
;

6)
$$f(x) = |x-3|-2$$
;

B)
$$f(x) = 8x^2 - x^4$$
;

B)
$$f(x) = 8x^2 - x^4$$
; $f(x) = \left| \frac{1}{x} - 1 \right|$.

- 290. Найдите критические точки функции. Определите, какие из них являются точками максимума, а какие - точками минимума: a) $f(x)=5+12x-x^3$; 6) $f(x)=9+8x^2-x^4$; B) $f(x)=2x^3+3x^2-4$; $f(x)=\frac{1}{2}x^4-x^2$.

Исследуйте функцию и постройте ее график (296-297)

296. a)
$$f(x) = x^2 - 2x + 8$$
;

296. a)
$$f(x) = x^2 - 2x + 8;$$
 6) $f(x) = -\frac{2x^2}{3} + x + \frac{2}{3};$

B)
$$f(x) = -x^2 + 5x + 4$$
;

B)
$$f(x) = -x^2 + 5x + 4$$
; r) $f(x) = \frac{x^2}{4} + \frac{x}{16} + \frac{1}{4}$.
297. a) $f(x) = -x^3 + 3x - 2$; 6) $f(x) = x^4 - 2x^2 - 3$; b) $f(x) = x^3 + 3x + 2$; r) $f(x) = 3x^2 - x^3$.

297. a)
$$f(x) = -x^3 + 3x - 2$$

6)
$$f(x) = x^4 - 2x^2 - 3$$

B)
$$f(x) = x^3 + 3x + 2$$

r)
$$f(x) = 3x^2 - x^3$$

298. Найдите промежутки возрастания и убывания функции:

a)
$$f(x)=1+1.5x-3x^2-2.5x^3$$
;

a)
$$f(x)=1+1,5x-3x^2-2,5x^3$$
; 6) $f(x)=\frac{x^5}{5}-\frac{x^3}{3}-6x+1$;

B)
$$f(x) = \frac{x^4}{4} + 8x - 5$$
;

r)
$$f(x)=x^3-6x^2-15x-2$$
.

299. Докажите, что функция f возрастает на множестве R:

a)
$$f(x) = 2x - \cos x$$
;

6)
$$f(x) = x^5 + 4x$$
;

B)
$$f(x) = \sin x + \frac{3x}{2}$$

B)
$$f(x) = \sin x + \frac{3x}{2}$$
; $f(x) = 2x^3 + x - 5$.

График
График
График

График
График

Домашняя работа

295. Исследуйте функцию на возрастание, убывание и экстремумы. Постройте график функции:

a)
$$f(x) = \frac{1}{2}x^4 - 8x^2$$
; 6) $f(x) = \frac{3x}{1+x^2}$;

6)
$$f(x) = \frac{3x}{1+x^2}$$
;

B)
$$f(x) = 2x - \frac{1}{6}x^3$$
; r) $f(x) = \frac{x^2 - 2x + 2}{x - 1}$.

r)
$$f(x) = \frac{x^2 - 2x + 2}{x - 1}$$

График
График
График
График

Исследуйте функцию и постройте се график (300-302).

300. a)
$$f(x) = \frac{1}{2}x^2 - \frac{1}{5}x^5$$
;

6)
$$f(x) = 4x^2 - x^4$$

300. a)
$$f(x) = \frac{1}{2}x^2 - \frac{1}{5}x^5;$$
 b) $f(x) = 4x^2 - x^4;$ c) $f(x) = \frac{1}{5}x^5 - 1\frac{1}{3}x^3;$ c) $f(x) = 5x^3 - 3x^5.$
301. a) $f(x) = x^2 \sqrt{1+x};$ b) $f(x) = x \sqrt{2-x};$ c) $f(x) = \frac{6(x-1)}{x^2+3};$ c) $f(x) = \frac{2x}{1-x^2}.$

r)
$$f(x) = 5x^3 - 3x^5$$

301. a)
$$f(x) = x^2 \sqrt{1+x}$$

6)
$$f(x) = \frac{6(x-1)}{x^2+3}$$

$$f(x) = x_2 \sqrt{2 - x_2}$$

r)
$$f(x) = \frac{2x}{1-x^2}$$

6)
$$f(x) = \frac{2x}{1 + x^2}$$

B)
$$f(x) = \cos^2 x - \cos x$$
; $f(x) = \frac{x}{x-1}$.

r)
$$f(x) = \frac{x}{x-1}$$

График
График
График

Тема 15. Первообразная

Запомни!

ПЕРВООБРАЗНАЯ

Первообразной функции f(x) на заданном промежутке I называется функция F такая, что для всех x из этого промежутка выполняется тождество F'(x) = f(x).

Примеры:

- 1) $F(x) = \frac{x^2}{2}$ первообразная функции f(x) = x на интервале $(-\infty; \infty)$, так как $F'(x) = = \left(\frac{x^2}{2}\right)' = \frac{1}{2}(x^2)' = \frac{1}{2} \cdot 2x = x = f(x)$ для всех $x \in (-\infty; \infty)$
- 2) $F(x) = \sin x$ первообразная функции $f(x) = \cos x$ на интервале $(-\infty; \infty)$, так как $F'(x) = (\sin x)' = \cos x = f(x)$ для всех $x \in (-\infty; \infty)$

Основное свойство первообразной:

Любая первообразная функции f(x) на некотором промежутке I может быть записана в виде F(x) + C, где F(x) – одна из первообразных для функции f(x) на данном промежутке, а C – некоторая произвольная постоянная.

Функция	Первообразные		
а	ax + C		
$x^p, p \neq -1$	$\frac{x^{p+1}}{p+1} + C$		
$\frac{1}{x}$, $x > 0$	$\ln x + C$		
$\frac{1}{x}$, $x < 0$	$\ln(-x) + C$		
e ^x	$e^{x}+C$		

Функция	Первообразные
a ^x	$\frac{a^x}{\ln a} + C$
sin x	$-\cos x + C$
cosx	$\sin x + C$
$\frac{1}{\cos^2 x}$	tg x + C
$\frac{1}{\sin^2 x}$	−ctg x + C

Практическая работа

1. Найдите первообразную для следующих функций:

A)
$$f(x) = \sqrt{3}$$

$$\mathbf{b})\ \mathbf{f}(\mathbf{x}) = \mathbf{x}^{\mathbf{g}}$$

B)
$$f(x) = \frac{1}{x^5}$$

$$\Gamma$$
) $f(x) = 2 - x^4 + 3x^7$ _____

Д)
$$f(x) = \frac{1}{\cos^2 x} - \frac{2}{3}$$

E)
$$f(x) = (4x - 5)^2$$

$$\mathbb{K}) f(x) = \sin\left(\frac{\pi}{2} - 6x\right)$$

A)
$$f(x) = \frac{1}{7}$$

$$\mathbf{b}$$
) $\mathbf{f}(\mathbf{x}) = \mathbf{x}^9$ _____

B)
$$f(x) = \frac{1}{x^6}$$

$$\Gamma$$
) $f(x) = x^5 + 8x^3 - \sqrt{5}$ _____

$$\Pi$$
 $f(x) = 4 + \sin x$ ______

E)
$$f(x) = (2 - 7x)^4$$

$$\mathcal{K}) f(x) = \frac{1}{\sin^2(4x - \frac{\pi}{a})}$$

2. Найдите первообразную для следующих функций, проходящую через точку М:

A)
$$f(x) = 3x^2 - 8x^3 + 5$$
, $M(-2; 10)$

E)
$$f(x) = -8 \cos x$$
, $M(\frac{\pi}{6}; 5)$ _____

A)
$$f(x) = 4x^3 + 10x - 9$$
, $M(3; 15)$

E)
$$f(x) = \frac{6}{\cos^2 x}$$
, $M(\frac{\pi}{4}; -7)$ _____

Самостоятельная работа

Найдите первообразную следующих функций:

a)
$$f(x) = 3x - 1$$
; $f(x) = x^5 + \cos x$; B) $f(x) = \frac{1}{5}x^4 + 5$.

Найдите первообразную функции $f(x) = 3x^2 + 2x - 1$, проходящую через точку А(-1;10). Найдите первообразную следующих функций: a) f(x) = 2 - x; 6) $f(x) = x^4 - \sin x$; B) $f(x) = \frac{1}{2}x^5 - 7$. Найдите первообразную функции $f(x) = 4x^3 - 3x^2 - 1$, проходящую через точку А(2;-8). Найдите первообразные следующих функций: $f(x) = 5x^2 - 4x + 8$ $f(x) = \frac{3}{\cos^2 x} - \sin x;$ $f(x) = (7x - 1)^{10}$ Найдите первообразные следующих функций: $f(x) = 6x^3 - 2x + 1$ $f(x) = \cos x + \frac{2}{\sin^2 x}$ $f(x) = \sin(3x - \pi)$ Найдите первообразную для функции f(x), проходящую через точку M: $f(x) = 4x - 6x^2 - 1$, M(3;-8)

Найдите первообразную для функции f(x), проходящую через точку M: $f(x) = 3x^2 - 8x + 7$, M(-2;9)

Домашняя работа

Найдите первообразную для следующих функций:

A)
$$f(x) = -0.45$$
;

$$\mathbf{E}(\mathbf{x}) = \mathbf{x}^{\mathbf{10}};$$

B)
$$f(x) = \frac{1}{x^7}$$
;

$$\Gamma$$
) $f(x) = 4 + 2x^6 + x^2$;

Д)
$$f(x) = \frac{1}{\sin^2 x} - \sqrt{7}$$
;

E)
$$f(x) = (5x - 6)^3$$
;

$$\mathbb{K}) f(x) = \cos\left(\frac{\pi}{6} - 5x\right).$$

Найдите первообразную для следующих функций, проходящую через точку M:

A)
$$f(x) = x - 9x^2 + 4$$
, M(-4; -20):

Б)
$$f(x) = 4 \sin x$$
, $M(\frac{\pi}{3}; 7)$.

Найдите первообразную для следующих функций:

A)
$$f(x) = 132$$
;

Б)
$$f(x) = x^{11}$$
;

B)
$$f(x) = \frac{1}{x^2}$$
;

$$\Gamma$$
) f(x) = $-2x + 6x^9 - 0.5$;

Д)
$$f(x) = \frac{2}{5} + \cos x$$
;

E)
$$f(x) = (\sqrt{2} - 6x)^5$$
;

$$\mathcal{K}) f(x) = \frac{1}{\cos^2(3x+\pi)}.$$

Найдите первообразную для следующих функций, проходящую через точку М:

A)
$$f(x) = 7 - 6x^2 + 12x^3$$
, M(2; -25):

B)
$$f(x) = \frac{1}{\sin^2 x}$$
, M($\frac{3\pi}{4}$; -5).

Тема 16. Определенный интеграл

Запомни!

 $\int_a^b f(x)dx$, читается: «интеграл от а до b эф от икс дэ икс».

І. Величина определенного интеграла не зависит от обопеременной интегрирования, значения

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$$
, где x, t – любые буквы.

II. Определенный интеграл с одинаковыми пределами ин-

$$\int_{a}^{a} f(x)dx = 0$$

тегрирования равен нулю. а

III. При перестановке пределов интегрирования определенный интеграл меняет свой знак на обратный.

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

IV. Если промежуток интегрирования [a,b] разбит на конечное число частичных промежутков, то определенный интеграл, взятый по промежутке [a,b], равен сумме определенных интегралов, взятых по всем его частичным проме-

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
жуткам.

V. Постоянный множитель можно выносить за знак опре-

$$\int_{a}^{b} Af(x)dx = A \int_{a}^{b} f(x)dx$$

деленного интеграла.

VI. Определенной интеграл от алгебраической суммы конечного числа непрерывных функций равен такой же алгебраической сумме определенных интегралов от этих

$$\int\limits_a^b [f(x)+g(x)-h(x)]dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx - \int\limits_a^b h(x)dx$$
 функций.

Таблица интегралов

	Интеграл	Значение		Интеграл	Значение
1	∫tgxdx	-ln cosx +C	9	∫e*dx	e ^x + C
2	∫ctgxdx	ln sinx + C	10	∫cosxdx	sinx + C
3	$\int a^x dx$	$\frac{a^x}{\ln a} + C$	11	$\int \sin x dx$	-cosx + C
4	$\int \frac{dx}{a^2 + x^2}$	$\frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$	12	$\int \frac{1}{\cos^2 x} dx$	tgx + C
5	$\int \frac{dx}{x^2 - a^2}$	$\frac{1}{2a} \ln \left \frac{x+a}{x-a} \right + C$	13	$\int \frac{1}{\sin^2 x} dx$	-ctgx + C
6	$\int \frac{dx}{\sqrt{x^2 \pm a^2}}$	$\left \ln \left x + \sqrt{x^2 \pm a^2} \right + C \right $	14	$\int \frac{dx}{\sqrt{a^2 - x^2}}$	$\arcsin \frac{x}{a} + C$
7	$\int x^{\alpha} dx$	$\frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$	15	$\int \frac{1}{\cos x} dx$	$\ln \left tg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right + C$
8	$\int \frac{dx}{x}$	$\ln x + C$	16	$\int \frac{1}{\sin x} dx$	$\ln \left \log \frac{x}{2} \right + C$

Интегрирование по частям

Пусть функции u=u(x) и v=v(x) имеют непрерывные производные на отрезке [a,b]. Тогда имеет место следующая формула интегрирования по частям: $\int\limits_a^b u dv = uv \Big|_a^b - \int\limits_a^b v du \, .$

Практическая работа

Выполните ственно):	неопределенное	интегрирование	(непосред
$\int (x^2-x)dx$!x		
$\int \frac{dx}{\sin^2 x}$			
$\int (x+2)dx$			
$\int \left(e^x - e^{-x}\right)$	dx		
$\int \frac{dx}{\sqrt{x}}$			

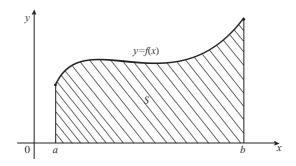
$\int \sin 2x dx$	 		
$\int 2^x dx$			
$\int \frac{dx}{x}$			
$\int \frac{\frac{-2}{3}}{x} dx$			
$\int cos3xdx$			

Самостоятельная работа

Выполните интегрирование:

1)
$$\int_{-1}^{1} dx$$
, 2) $\int_{0}^{1} x dx$, 3) $\int_{0}^{\pi} \sin x dx$, 4) $\int_{-1}^{1} x^{3} dx$, 5) $\int_{-\pi/4}^{\pi/4} \sin x dx$.

Домашняя работа


Вычислить инте $\int x^5 dx$	гралы:		
$\int ctgxdx$			
$\int (1+\sin x)^3 dx$			
\int xsinxdx			

Тема 17. Площадь криволинейной трапеции. Формула Ньютона-Лейбница

Запомни!

Геометрический смысл определенного интеграла

Пусть на отрезке [a,b] задана непрерывная неотрицательная функция y=f(x). Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y=f(x), снизу — осью Ох, слева и справа — прямыми x=a и x=b.

Определенный интеграл $\int_a^b f(x)dx$ от неотрицательной функции y=f(x) с геометрической точки зрения численно равен площади криволинейной трапеции, ограниченной сверху графиком функции y=f(x), слева и спра-

ва – отрезками прямых x = a и x = b, снизу – отрезком [a, b] оси Ох.

Формула Ньютона–Лейбница
$$\int_{a}^{b} f(x)dx = F(b) - F(a),$$

Разность F(b)-F(a) принято записывать следующим образом: $F(b)-F(a)=F(x)\big|_a^b$, где символ $\big|_a^b$ называется знаком двойной подстановки.

Таким образом, формулу можно записать в виде: $\int_a^b f(x) dx = F(x) \Big|_a^b = F(b) - F(a)$.

Практическая работа

Пример 1. Вычислить интеграл $\int_{1}^{3} x^{2} dx$.

Решение. Для подынтегральной функции $f(x) = x^2$ про- извольная первообразная имеет вид $F(x) = \frac{x^3}{3}$. Тогда

$$\int_{1}^{3} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{3} = \frac{3^{3}}{3} - \frac{1^{3}}{3} = 9 - \frac{1}{3} = 8\frac{1}{3}$$

Задание 1. Вычислите значения функции:

a)
$$\int_{-1}^{3} (1+6x-3x^2) dx$$
; = _____

$$\int_{-\frac{3\pi}{2}}^{0} \sin x dx ; = \underline{\qquad}$$

$$\mathbf{B}) \int_{-\frac{3\pi}{2}}^{\frac{3\pi}{2}} \cos x dx \, ; = \underline{\hspace{1cm}}$$

$$\Gamma) \int_{e}^{e^2} \frac{dx}{4x}; = \underline{\hspace{1cm}}$$

$$\pi$$
) $\int_{1}^{2} \left(\frac{x^{2}}{2} - \frac{2}{x^{2}}\right) dx$ ______

$$e) \int_0^{\pi} (1 + \sin^2 x) \, dx \underline{\hspace{1cm}}$$

ж)
$$\int_{1}^{4} \frac{x^2 + x\sqrt{x} + x}{\sqrt{x}} dx.$$

$$3) \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{\cos^2 3x}$$

Задание 2. Вычислите интегралы:

Пример 2. Вычислить $\int_{1}^{e} \ln x dx$.

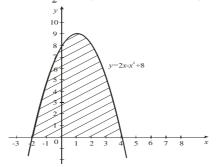
Решение. Положим
$$u=\ln x,\ dv=dx$$
, отсюда $du=\frac{1}{x}dx,\ v=x$. По формуле нахо-

дим

$$\int_{1}^{e} \ln x dx = x \ln x \Big|_{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} dx = x \ln x \Big|_{1}^{e} - \int_{1}^{e} dx = x \ln x \Big|_{1}^{e} - x \Big|_{1}^{e} =$$

$$= e \ln e - 1 \cdot \ln 1 - (e - 1) = e - 0 - e + 1 = 1.$$

Задание 3. Вычислить $\int_{0}^{\pi} x \cos x dx$._____


Вычислить
$$\int_{0}^{1} (x^2 - 1) e^x dx$$
._____

Пример 3. Найти площадь фигуры, ограниченной линией $y = 2x - x^2 + 8$ и осью Ox.

Решение. Графиком функции $y = 2x - x^2 + 8$ является парабола, ветви которой направлены вниз. Построим ее (рис.). Чтобы определить пределы интегрирования, найдем точки пересечения линии (параболы) с осью Ox (прямой y = 0). Для этого решаем систему уравнений

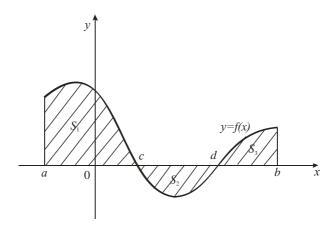
$$\begin{cases} y = 2x - x^2 + 8, \\ y = 0. \end{cases}$$

Получаем: $2x - x^2 + 8 = 0$, решая через дискриминант, получим, $x_1 = -2$, $x_2 = 4$; следовательно, a = -2, b = 4.

Площадь фигуры находим по формуле

$$S = \int_{-2}^{4} (2x - x^2 + 8) dx = 2 \int_{-2}^{4} x dx - \int_{-2}^{4} x^2 dx + 8 \int_{-2}^{4} dx = x^2 \Big|_{-2}^{4} - \frac{x^3}{3} \Big|_{-2}^{4} + 8x \Big|_{-2}^{4} =$$

$$= \left(4^2 - (-2)^2\right) - \left(\frac{4^3}{3} - \frac{(-2)^3}{3}\right) + \left(8 \cdot 4 - 8 \cdot (-2)\right) = (16 - 4) - \left(\frac{64}{3} + \frac{8}{3}\right) + (32 + 16) =$$


$$= 12 - 24 + 48 = 36 \text{ (кв. ед.)}.$$

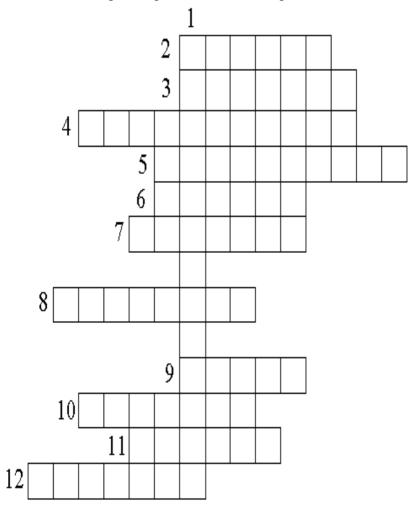
Если функция y=f(x) не положительна и непрерывна на отрезке [a,b], то площадь криволинейной трапеции, ограниченной снизу графиком данной функции, сверху — осью Ox, слева и справа — прямыми x=a и x=b, вычисляет-

ся по формуле $S = -\int_{a}^{b} f(x)dx$. В случае если функция

y = f(x) непрерывна на отрезке [a, b] и меняет знак в конечном числе точек, то площадь заштрихованной фигуры равна алгебраической сумме соответствующих определенных интегра-

лов:
$$S = S_1 + S_2 + S_3 = \int_a^c f(x)dx - \int_c^d f(x)dx + \int_d^b f(x)dx$$

Задание 4. Вычислить площадь фигуры, ограниченной осью Ox и графиком функции $y = x^2 - 2x$ при $x \in [0,3]$.


Задание 5. Используя геометрический смысл интеграла, найдите $\int_{-3}^{4} ||x| - 2| dx$.

Задание 6. Найдите площадь фигуры, ограниченной линиями $y=cos2x,\ y=0,\ x=0,\ x=\frac{\pi}{4}.$

Задание 7. Найдите площадь фигуры, ограниченной линиями $y=x^2$, $x+y=6$, $y=0$.
Задание 8. Используя геометрический смысл интеграла найдите $\int_{-4}^{5} x - 3 dx$.
Задание 9. При каких а будет верно равенство: $\int_{a}^{3} (2x-3) dx = 2$

Самостоятельная работа

Кроссворд по теме «Интеграл»

- 1. Как называется функция F(x)?
- 2. Что является графиком функции у = ах+b?
- 3. Самая низкая школьная оценка.

- 4. Какой урок обычно проходит перед зачётом?
- 5. Синоним слова дюжина?
- 6. Есть в каждом слове, у растения и может быть у уравнения.
- 7. Что можно вычислить при помощи интеграла?
- 8. Одно из важнейших понятий математики.
- 9. Форма урока, на котором проводится проверка знаний.
- 10. Немецкий ученый, в честь которого названа формула, связывающая площадь криволинейной трапеции и интеграл.
- 11. Множество точек плоскости с координатами (x, f(x)), где x пробегает область определения функции f.
- 12. Соответствие между множествами X и Y, при котором каждому значению множества X поставлено в соответствие единственное значение из множества Y, носит название

Задание: отметить знаком «+» верные вычисления, знаком «-» неверные вычисления.

• Верно ли что:

$$\int x^5 dx = 5x^4 + c$$

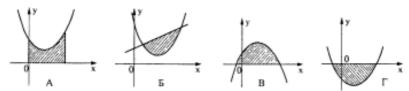
$$\int x 6 dx = \frac{1}{7} x^7$$

• Проверить верны ли равенства

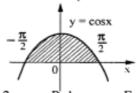
a)
$$\int_{0}^{1} x^{3} dx = \frac{1}{4}$$

$$6) \int_{0}^{5} x^{2} dx = 2\frac{1}{3}$$

B)
$$\int_{2}^{4} x^{2} dx = 2x$$

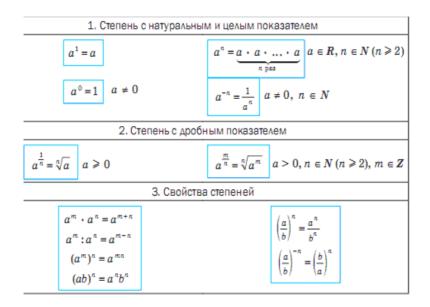

$$\Gamma \int_{0}^{3} 5 dx = \frac{5x^{2}}{2} \bigg|_{0}^{3} = \frac{5}{2} (3^{2} - 0^{2}) = \frac{45}{2}$$

д)
$$\int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{0}^{1} = \frac{1}{3} (1 - 0) = \frac{1}{3}$$


Домашняя работа

Задание: на основании изученной темы «Интеграл», проверьте свои знания, через выполнение тестового занятия. Верный ответ подчеркните.

 На каком рисунке изображена фигура, не являющаяся криволинейной трапецией?


- 2. С помощью формулы Ньютона-Лейбница вычисляют:
- Первообразную функции;
- Б. Площадь криволинейной трапеции;
- В. Интеграл;
- Г. Производную.
- 3. Найдите площадь заштрихованной фигуры.

- A. 0. β. -2. B. 1. Γ. 2.
- 4. Найдите площадь фигуры, ограниченной осью Ох и параболой $y = 9 x^2$.
 - А. 18. Б. 36.
- B. 72.
- Г. Нельзя вычислить.

Тема 18. Понятие степени. Иррациональные уравнения. Степень с рациональным показателем

Запомни!

Свойства корней

1°.
$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$
.

2°. $\sqrt[n]{\frac{a}{b}} = \sqrt[n]{a} \ (b \neq 0)$.

3°. $\sqrt[n]{\sqrt[n]{a}} = \sqrt[n]{a} \ (k > 0)$.

4°. $\sqrt[n]{a} = \sqrt[n]{a^k} \ (k > 0)$.

5°. $\sqrt[n]{a^k} = (\sqrt[n]{a})^k \ (\text{если } k \leq 0, \text{ то } a \neq 0)$.

Практическая работа

Устный счет по карточке:

8	$\left(\sqrt{32}\right)^{\frac{2}{5}}$	$4^{-\frac{3}{2}}$	64 ⁶	32 ⁻³ / ₅	$\left(\sqrt{27}\right)^{\frac{2}{3}}$	32 ⁵	$\left(\sqrt{8}\right)^{\frac{2}{5}}$	16 4
7	$4^{-\frac{1}{2}}$	$\left(\frac{1}{9}\right)^{-\frac{1}{2}}$	125 ¹ / ₃	$\left(\frac{1}{8}\right)^{-\frac{1}{3}}$	16-4	$\left(\frac{1}{16}\right)^{-\frac{1}{2}}$	81 4	$\left(\frac{1}{27}\right)^{-\frac{1}{3}}$
6	16 ¹	64 ¹ / ₂	8 ¹ / ₃	32 ¹ / ₅	27 ^{1/3}	81 ¹ / ₄	64 ^{1/3}	25 ¹ / ₂
5	(√7) ²	$(\sqrt{2})^{8}$	(√5)4	$(\sqrt{2})^{10}$	(√6)4	(√2)6	$(\sqrt{3})^4$	(√5)0
4	$\left(\frac{3}{2}\right)^{-3}$	$\left(\frac{2}{5}\right)^{-2}$	$\left(\frac{3}{4}\right)^{-3}$	$\left(\frac{1}{2}\right)^{-5}$	$\left(\frac{1}{3}\right)^{-1}$	$\left(\frac{2}{3}\right)^4$	$\left(\frac{3}{4}\right)^{-3}$	$\left(\frac{1}{2}\right)^{-5}$
3	6 ⁻²	2-4	3 ⁻³	5 ⁻¹	3-4	2-3	7-2	4-1
2	$\left(\frac{1}{2}\right)^5$	$\left(\frac{2}{3}\right)^3$	$\left(\frac{3}{5}\right)^2$	$\left(\frac{3}{2}\right)^1$	$\left(\frac{4}{3}\right)^3$	$\left(\frac{1}{3}\right)^4$	$\left(\frac{2}{5}\right)^3$	$\left(\frac{3}{4}\right)^2$
1	3 ⁴	4 ³	24	5 ³	25	33	50	2 ³
	a	Ъ	С	d	е	f	g	h

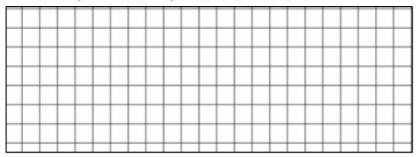
Проверьте правильность вычислений:

$$670. \text{ a) } \sqrt[3]{\frac{64 \cdot 27}{125}} = \frac{\sqrt[3]{64} \cdot \sqrt[3]{27}}{\sqrt[3]{125}} = \frac{\sqrt[3]{4^3} \cdot \sqrt[3]{3^3}}{\sqrt[3]{5^3}} = \frac{4 \cdot 3}{5} = \frac{12}{5}.$$

$$6) \sqrt[4]{\frac{81}{16 \cdot 625}} = \frac{\sqrt[4]{81}}{\sqrt[4]{16} \cdot \sqrt[4]{625}} = \frac{\sqrt[4]{3^4}}{\sqrt[4]{2^4} \cdot \sqrt[4]{5^4}} = \frac{3}{2 \cdot 5} = \frac{3}{10}.$$

$$8) \sqrt[5]{\frac{3^{10} \cdot 5^5}{7^{10}}} = \frac{\sqrt[5]{3^{10}} \cdot \sqrt[5]{5^5}}{\sqrt[5]{7^{10}}} = \frac{\sqrt[5]{3^2} \cdot \sqrt[5]{5^5}}{\sqrt[5]{7^2}} = \frac{3^2 \cdot 5}{7^2} = \frac{45}{49}.$$

$$1) \sqrt[6]{\frac{9^9}{2^{12} \cdot 5^6}} = \frac{\sqrt[6]{9^9}}{\sqrt[6]{2^{12}} \cdot \sqrt[6]{5^6}} = \frac{\sqrt[6]{3^2})^{3 \cdot 3}}{\sqrt[6]{(2^2)^6} \cdot \sqrt[6]{5^6}} = \frac{3^3}{2^2 \cdot 5} = \frac{27}{20} = 1\frac{7}{20}.$$


Решите уравнения (385-388).

385. a)
$$x^3+4=0$$
; 6) $x^6=5$; B) $x^3=4$; r) $x^4=10$.

386. a)
$$x^{10} - 15 = 0$$
; 6) $x^7 + 128 = 0$; B) $x^6 - 64 = 0$; r) $x^5 = 3$.

387. a)
$$16x^4 - 1 = 0$$
; b) $0.01x^3 + 10 = 0$; b) $0.02x^6 - 1.28 = 0$; c) $12\frac{3}{4} - \frac{3}{4}x^2 = 0$.

388. a)
$$\sqrt[3]{x} = -0.6$$
; б) $\sqrt[4]{x} = 3$; в) $\sqrt{x} = 5$; г) $\sqrt[7]{x} = -1$.

О Пример 1. Решим уравнение $\sqrt{x^2-5}=2$.

Возведем обе части этого уравнения в квадрат и получим $x^2-5=4$, откуда следует, что $x^2=9$, т. е. x=3 или x=-3.

Проверим, что полученные числа являются решениями уравнения. Действительно, при подстановке их в данное уравнение получаются верные равенства

$$\sqrt{3^2-5}=2$$
 и $\sqrt{(-3)^2-5}=2$.

Следовательно, x=3 и x=-3 — решения данного уравнения.

 Π ример 2. Решим уравнение $\sqrt{x} = x - 2$.

Возведя в квадрат обе части уравнения, получим $x=x^2-4x+4$. После преобразований приходим к квадратному уравнению $x^2-5x+4=0$, корни которого x=1 и x=4. Проверим, являются ли найденные числа решениями данного уравнения. При подстановке в него числа 4 получаем верное равенство $\sqrt{4}=4-2$, т. е. 4- решение данного уравнения. При подстановке же числа 1 получаем в правой части -1, а в левой части число 1. Следовательно, 1 не является решением уравнения; говорят, что это посторонний корень, полученный в результате принятого способа решения.

CICA IONIDAO IIIONO E.

 Π ример 4. Решим уравнение $\sqrt{x-6} = \sqrt{4-x}$.

Возводя в квадрат обе части этого уравнения, получаем x-6=4-x, 2x=10, x=5. Подстановкой убеждаемся, что число 5 не является корнем данного уравнения. Поэтому уравнение не имеет решений.

Иногда удобнее решать иррациональные уравнения, используя

равносильные переходы.

О Пример 5. Решим уравнение $\sqrt{x-2}=x-8$.

По определению $\sqrt{x-2}$ — это такое неотрицательное число, квадрат которого равен подкоренному выражению. Другими словами, уравнение $\sqrt{x-2}=x-8$ равносильно системе

$$\begin{cases} x-2 = (x-8)^2, \\ x-8 \ge 0. \end{cases}$$

Самостоятельная работа:

I вариант	II вариант
a) $\sqrt{x^2 - 5} = 2$;	a) $\sqrt{x^2 + 1} = 2$;
6) $\sqrt{x} = x-2;$	6) $\sqrt{x} = x + 2$;
B) $\sqrt{x^2 - 2} = \sqrt{x}$;	B) $\sqrt{x^2 + 2} = \sqrt{x}$;
r) $\sqrt{x-6} = \sqrt{4-x}$;	$r) \sqrt{x+6} = \sqrt{4+x} \; ;$
д) $\sqrt{x^2-5} \ge 2$;	д) $\sqrt{x^2-5} \le 2$;
e) $\sqrt{x^2 - 16} \ge 1$.	e) $\sqrt{x^2 - 16} \le 1$.
	· · · · · · · · · · · · · · · · · · ·

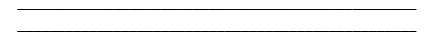
Домашняя работа

Решение примеров:

Первый уровень

1.
$$\sqrt{x^2 + 2x + 10} = 2x - 1;$$

2.
$$\sqrt{17+2x-3x^2}$$
 =x+1;


3.
$$\sqrt{x^2 - 16} = x^2 - 22$$
;

4.
$$\sqrt{x^2+9} = x^2 - 11$$
;

5.
$$\sqrt{x+17} - \sqrt{x-7} = 4$$
;

6. $\sqrt{x+7} + \sqrt{x-2} = 9$;

7. $\sqrt{x+1}\sqrt{x+6} = 6$;

8. $\sqrt{x}\sqrt{2-x} = 2x$;

9.
$$\sqrt{5+\sqrt[3]{x+3}}=3$$
;

10.
$$\sqrt{18 - \sqrt[3]{x + 10}} = 4$$
;

11.
$$\sqrt{x-3} = 1 + \sqrt{x-4}$$
;

Второй уровень

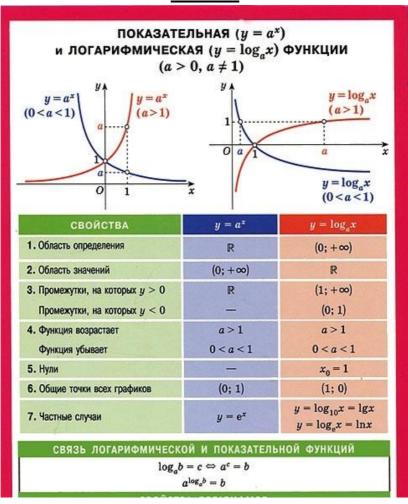
1.
$$\sqrt{225 + x^2} = x^2 - 47$$
;

$$2.\sqrt{x^2 + 36} = x^2 - 54$$

$$3.\sqrt{2x+1} = \sqrt{x^2 - 2x + 4}$$

4.
$$x = \sqrt[3]{x^3 + x^2 - 6x + 8}$$

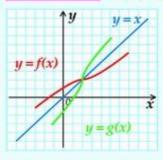
5.
$$x+1=\sqrt[3]{x^3+2x^2+x}$$



$$6^{\sqrt{x-3}} = 1 + \sqrt{x-4}$$

Тема 19. Показательная функция. Логарифмическая функция. Понятие об обратной функции. Степенная функция

Запомни!

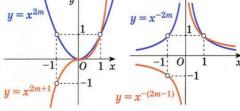

11. ПОНЯТИЕ ОБ ОБРАТНОЙ ФУНКЦИИ

ATTESPA » HANARA AHATRISA

ПОНЯТИЕ ОБ ОБРАТНОЙ ФУНКЦИИ

Функция g(x) называется обратной к функции f(x), если для всех x из области значений f(x) выполняется f(g(x)) = x. Если g – обратная к f, то f – обратная к g: f и g взаимно обратны.

Свойство:



Графики взаимно обратных функций симметричны относительно прямой y = x

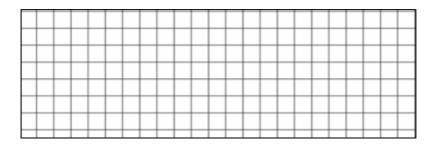
Теорема об обратной функции:

Если y = f(x) возрастает (убывает) на некотором промежутке I, то она обратима и обратная к ней функция y = g(x) также является возрастающей (убывающей)

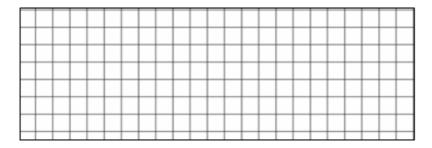
СТЕПЕННАЯ ФУНКЦИЯ $y=x^n\ (n\in\mathbb{Z})$

y	^		1
	1	y =	x^{2m}
-1		1	\rightarrow
$\frac{1}{2m+1}$	-1		
$y=x^{2m+1}$		m	< N

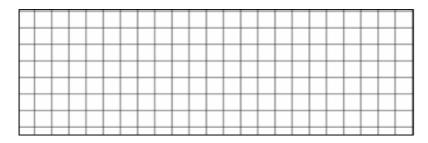
СВОЙСТВА	n=2m	n=2m+1	n=-2m	n = -(2m-1)
1. Область определения	R	\mathbb{R}	₹\{0}	₹\{0}
2. Область значений	$[0;+\infty)$	R	$(0; +\infty)$	₹\{0}
3. Чётность	чётная	нечётная	чётная	нечётная
4. Промежутки, на которыха) y > 0б) y < 0	ℝ \{0} —	$(0; +\infty)$ $(-\infty; 0)$	R —	$egin{array}{c} (0;+\infty) \ (-\infty;0) \end{array}$
5. Промежуткиа) возрастанияб) убывания	$[0; +\infty)$ $(-\infty; 0]$	R —	$(-\infty;0) \ (0;+\infty)$	_ R\{0}
6. Общие точки всех графиков	(-1; 1), (0; 0), (1; 1)	(-1; -1), (0; 0), (1; 1)	(-1; 1), $(1; 1)$	(-1; -1), $(1; 1)$

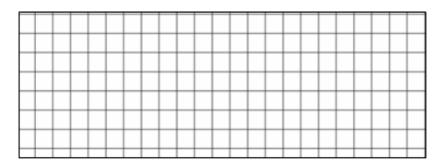

СВОЙСТВА	$n=\frac{1}{2m}$	$n = \frac{1}{2m+1}$
1. Область определения	$[0;+\infty)$	R
2. Область значений	$[0;+\infty)$	\mathbb{R}
3. Чётность	чётная	нечётная
4. Промежутки, на которых $y>0$ Промежутки, на которых $y<0$	$(0; +\infty)$	$egin{array}{l} (0;+\infty) \ (-\infty;0) \end{array}$
5. Промежутки возрастания Промежутки убывания	[0; +∞) —	<u>R</u>
6. Общие точки всех графиков	(0; 0), (1; 1)	(-1; -1), (0; 0), (1; 1)

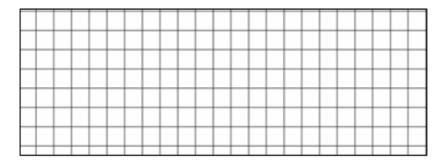
istudy.su

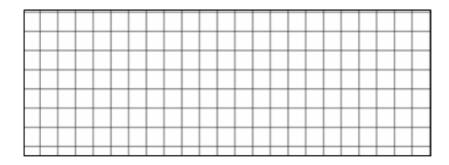

Практическая работа

Задание 1. Изобразить схематически график функции:


$$y = 3^x$$

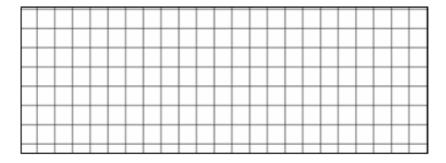

$$y = 3^{-x}$$


$$y = log_2(3x)$$


$$y = log_2(-3x)$$

$$y=x^{\frac{2}{3}}$$

$$y=x^{-\frac{2}{3}}$$


Задание 2. Построить графики функции y=log₂x, y=log $\frac{1}{2}$ x

Составим таблицы:

X	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8
y=log ₂ x	-3	-2	-1	0	1	2	3

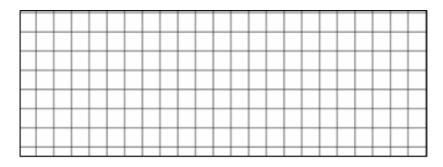
X	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	1/8
$y = \log \frac{1}{2} x$	-3	-2	-1	0	1	2	3

Схематично построим графики:

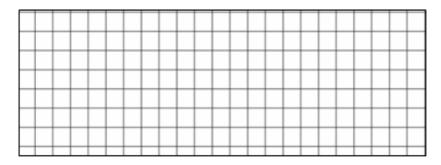
Задание 3. Построить графики функции $y=2^x$, $y=(\frac{1}{2})^x$

Составим таблицы:

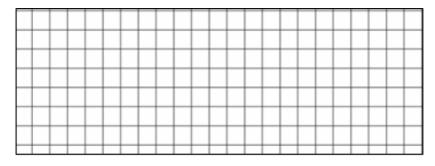
X	-3	-2	-1	0	1	2	3
y=2x	1	1	1	1	2	4	8
	8	$\frac{-}{4}$	$\frac{}{2}$				

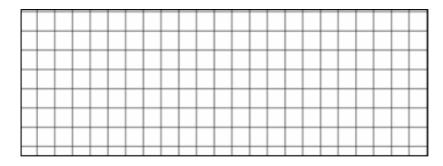

X	-3	-2	-1	0	1	2	3
$y=(\frac{1}{2})^x$	8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$

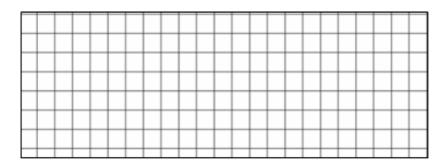
Схематично построим графики:


-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		П																П			

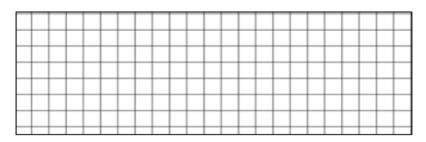
Самостоятельная работа


$$y = -3 * 2^x$$

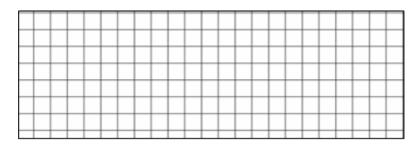

$$y=2^x$$

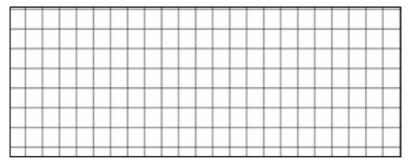

$$y = log_3(4 - 5x)$$

$$y = x^{\sqrt{3}}$$



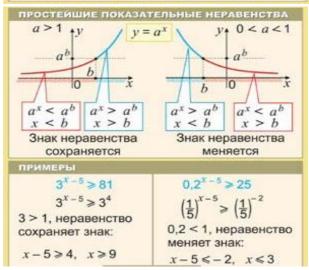
$$y = x^{-\sqrt{5}}$$




Домашняя работа

Задание 1. Найти область определения, промежутки возрастания и убывания, область значений функции $f(x) = 0,3^x - 1$. Постройте ее график.

Задание 2. Построить графики обратных тригонометрических функций



Тема 20. Решение показательных уравнений и неравенств

Запомни!

Практическая работа

Решите уравнение:

$$7^{x-2} = \sqrt[8]{49}$$

$$5^{x^2-2x-1}=25$$

Решите неравенства:

$$0.5^{7-3x} < 4$$

$$(\frac{1}{9})^x - \frac{28}{3^{x+1}} + 3 < 0$$

Решите систему уравнений:

$$\begin{cases} 2^x + 2^y = 12 \\ 3^{2x-y} = 3 \end{cases}$$

 $6x^2+2x > 6^3$

Самостоятельная работа

Часть А

А1. Укажите промежуток, содержащий корень уравнения

$$2^x = 8\sqrt{2}$$

- 1) (0;1); 2) (1;2); 3) (2;3); 4) (3;4).

- А2. Решите неравенство $5^{x^2+x} > -1$
- 1) $x \in R$;

- 2) решений 3) (-1;0); 4) $(-\infty;-1)\cup(0;+\infty).$
- A3. Решите неравенство $\left(\frac{1}{2}\right)^x \le \frac{1}{128}$

- 1) $\left(-\infty;7\right];$ 2) $\left[7;+\infty\right);$ 3) $\left[-7;+\infty\right);$ 4) $\left(-\infty;-7\right]$
- А4. Решите неравенство $\left(\frac{5}{8}\right)^{3x-7} \le \left(\frac{8}{5}\right)^{7x-3}$
- 1) $(-\infty;-1]$; 2) $(-\infty;1]$; 3) $[1;+\infty)$; 4) $[-1;+\infty)$.

Часть В

В5. Укажите число целых решений неравенства $\left(\frac{1}{2}\right)^{\frac{x+3}{x-2}} \geq 16 \ .$

В6. Найдите корни уравнения $3^{2x+1} - 4 \cdot 3^{x+1} + 9 = 0$. Если получили два корня, то в ответе впишите их произведение, если один, то его запишите в ответ.

- В7. Укажите число корней уравнения $(4^{x^2} 16) \cdot \sqrt{x 1} = 0$.
- В8. Укажите наибольшее целое число, являющееся решением неравенства $(0,2)^{|2x-1|} \ge \frac{1}{25}$.

Решите уравнения:

$$3^{2x} - 2 \cdot 3^{2x-1} - 2 \cdot 3^{2x-2} = 1$$

$$9 \cdot 4^{2x} - 5 \cdot 4^x - 4 = 0$$

$$4 \cdot 3^x - 6 = 2 \cdot 9^x - 12$$

Решите системы:

a)
$$\begin{cases} \left(\frac{1}{3}\right)^{2x-y} = 27, \\ 5^{3x-y} = \frac{1}{25} \end{cases}$$

$$6) \begin{cases} 64^{x-3y} = 8, \\ 12x + y = 2 \end{cases}$$

Домашняя работа

Часть А

А1. Укажите промежуток, содержащий корень уравнения

$$3^x = 9\sqrt{3}$$

- 1) (0;1); 2) (1;2); 3) (2;3); 4) (3;4).

- А2. Решите неравенство $4^{-x^2-x} > 1$

- 1) $x \in R$; 2) решений 3) (-1;0); 4) $(-\infty;-1) \cup (0;+\infty)$.
- A3. Решите неравенство $\left(\frac{1}{3}\right)^x \le \frac{1}{243}$

- 1) $(-\infty;5]$; 2) $(-\infty;81]$; 3) $[5;+\infty)$; 4) $[-5;+\infty)$.
- - А4. Решите неравенство $\left(\frac{8}{5}\right)^{3x-7} \le \left(\frac{5}{8}\right)^{7x-3}$
 - 1) $(-\infty;-1]$; 2) $(-\infty;1]$; 3) $[1;+\infty)$; 4) $[-1;+\infty)$.

Часть В

В5. Укажите число целых решений неравенства $\left(\frac{1}{3}\right)^{\frac{x-2}{x+3}} \ge 27$ В6. Решите уравнения $5^{2x-1} + 5^{x+1} = 250$. Если получили два корня, то в ответе впишите их произведение, если один, то его запишите в ответ. В7. Укажите число корней уравнения $(2^{x^2} - 32) \cdot \sqrt{3 - x} = 0$. В8. Укажите число целых решений неравенства $(0,5)^{|3x+1|} \ge \frac{1}{8}$.

Тема 21. Логарифмы и их свойства

Запомни!

Основные свойства логарифмов

ЛОГАРИФМЫ

Логарифмом положительного числа b по основанию a (a>0, $a\neq 1$) называется такой показатель степени c, в которую надо возвести число a, чтобы получить число b:

$$\log_a b = c \Leftrightarrow a^c = b$$
.

СВОЙСТВА ЛОГАРИФМОВ⁹)

- Основное логарифмическое тождество: $a^{\log_a b} = b, b > 0$
- · loga a = 1
- log_a 1 = 0
- Логарифм произведения: $\log_a xy = \log_a |x| + \log_a |y|$, xy > 0
- Логарифм частного: $\log_a \frac{x}{y} = \log_a |x| \log_a |y|, \frac{x}{y} > 0$
- Логарифм степени: $\log_a x^p = p \log_a |x|, x^p > 0$

$$\log_{a^q} x^p = \frac{p}{q} \log_a |x|, x^p > 0$$

- Логарифм корня: $\log_a \sqrt[q]{x} = \frac{1}{n} \log_a x, x > 0$
- Формула перехода к другому основанию:

$$\log_a b = \frac{\log_c b}{\log_c a}, \text{ rge } b > 0, c > 0, c \neq 1$$

$$\log_a b = \frac{1}{\log_b a}, \text{ rge } b > 0, b \neq 1$$

^{*)} Во всех приведенных формулах a > 0, $a \neq 1$

Практическая работа

Задание 1. Вычислите:

A) 2^{2+log₂ 5}
Б) 49 ^{log} ₇ √5
B) $\log_{\frac{1}{2}} 28 - \log_{\frac{1}{2}} 7$
Γ) $2\log_6^2 2 + \log_6^2 9$
A) 5 ^{log₅ 16 -1}
Б) 8 ^{log₂ 10}
B) log ₁ 4 + log ₁ 2
Γ) log ₅ 100 - 2log ₅ 2
Б) 81^{log_a√2}
B) log ₂ 15 – log ₂ 30
Γ) 4 log ₁₂ 2 + log ₁₂ 9
Задание 2. Найдите область определения функции у = $\log_6(4x-1)$.
Найдите область определения функции $y = log_{\frac{1}{9}}(7 - 2x)$.
Найдите область определения функции $y = \log_9(8x + 9)$.

Задание 3. Найдите х:

$$\log_{\frac{3}{2}} x = 3$$
; $\log_{5} x = -1$; $\log_{4} x = -2$; $\log_{6.7} x = -2$.

Задание 4. Дорешать, используя формулы:

- 1) $\log_{12}2 + \log_{12}72 = \log_{12}(2.72) = \log_{12}...=...$
- 2) $\log_{\frac{1}{5}} 75 \log_{\frac{1}{5}} 3 = \log_{\frac{1}{5}} (\frac{75}{3}) = \dots$
- 3) $\log_2 12 \log_2 15 + \log_2 20 = \log_2 (\frac{12}{15} \cdot \dots) = \dots$

Самостоятельная работа

Задание 1. Вычислите:

$$36^{\log_6 5} + 10^{l - lg \, 2} - 3^{\log_9 36} \ \underline{\hspace{1.5cm}}$$

Задание 2. Упростите выражение $A = 9^{3-\log_3 54} + 7^{-\log_7 2}$.

Задание 3. Упростить:

3 log₅a+ 6log₅B- 2log₅c ______

4 log ₅ a- 5log ₅ b+7log ₅ c
log ₅ B+ 8log ₅ c+2log ₅ a
Задание 4. Вычислить:
$1) \log_2 \log_2 \log_2 2^{16}$
$2)16^{1+\log_4 5} + 4^{\frac{1}{2}\log_2 3 + 3\log_8 5}$
3) $2\log_{25} 30 + \log_{\frac{1}{2}} 6$
4) $36^{\log_6 5} + 10^{1-\log_{10} 2} - 8^{\log_2 3}$

Домашняя работа

Задание 1. Вычислите:
A) 4 ^{log₄ 48 -2}
Б) 25 ^{log₅ 0,7}
B) lg 25 + lg 4;
Γ) log ₁₁ 484 - 2log ₁₁ 2.
Задание 2. Найдите область определения функции у
$\log_{0,3}(2-5x)$.

Тема 22. Логарифмические уравнения и неравенства

$$\frac{3\text{апомни!}}{\log_a x = b}$$

$$a^b = x$$

 $\mathbf{z} = \mathbf{a}^{\mathbf{b}}$ решение логарифмического уравнения

Основные типы логарифмических неравенств:

1).
$$\log_a f(x) > g(x), a > 0, a \ne 1$$

2).
$$\log_a f(x) < g(x), a > 0, a \ne 1$$

3).
$$\log_a f(x) > \log_a g(x)$$
, $a > 0$, $a \ne 1$

4).
$$c_0 \log^2 a x + c_1 \log a x + c_2 > 0$$
, $c_0 \neq 0$, $a > 0$, $a \neq 1$

5).
$$\log_{h(x)} f(x) > \log_{h(x)} g(x)$$

Решение указанных неравенств основано на следующих утверждениях:

Теорема. Если a > 1, то неравенство $\log_a f(x) > \log_a g(x)$ равносильно любой из систем:

$$\begin{cases} f(x) > g(x) \\ f(x) > 0 \\ g(x) > 0 \end{cases}$$
$$\begin{cases} f(x) > g(x) \\ g(x) > 0 \end{cases}$$

Если 0 < a < 1, то неравенство $\log_a f(x) > \log_a g(x)$ равносильно любой из систем:

$$\begin{cases} f(x) < g(x) \\ f(x) > 0 \\ g(x) > 0 \end{cases}$$

$$\begin{cases} f(x) < g(x) \\ f(x) > 0 \end{cases}$$

Теорема. Неравенство $\log_{h(x)} f(x) > \log_{h(x)} g(x)$ равносильно совокупности систем:

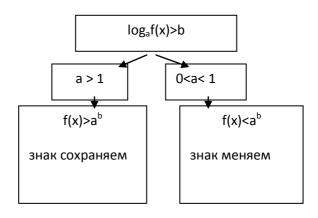
$$\begin{cases} 0 < h(x) < 1 \\ f(x) < g(x) \\ f(x) > 0 \end{cases}$$

$$\begin{cases} h(x) > 1 \\ f(x) > g(x) \\ g(x) > 0 \end{cases}$$

Теорема. Неравенство $\log_a f(x) > g(x)$, a > 1 равносильно неравенству $f(x) > a^{g(x)}$, при 0 < a < 1 – системе

$$\begin{cases} f(x) > a^{g(x)} \\ f(x) > 0 \end{cases}$$

Теорема. Неравенство $\log_a f(x) < g(x)$, a > 1 равносильно системе


$$\begin{cases} f(x) < a^{g(x)} \\ f(x) > 0 \end{cases}$$

при $0 \le a < 1$ – неравенству $f(x) \le a^{g(x)}$.

Теорема. Пусть a>0, a \neq 1,_x₁>0, x₂>0 Если $\log_a x_1>\log_a x_2$, то

- 1) при a>1 $x_1>x_2$ (знак сохраняем)
- 2) при 0<a<1 x₁<x₂ (знак меняем)

Иначе:

Практическая работа

Решите логарифмические уравнения:

A)
$$\log_{\frac{1}{6}}(12-2x)=-2;$$

$$5) \log_4(x^2 + 3x) = \log_4(x^2 + 3)$$

B)
$$lg^2x - 3lgx + 2 = 0$$
.

A)
$$\log_{\frac{1}{4}}(12-4x) = -3$$
;

$$5) \log_9(x^2 + 5x) = \log_9(x^2 + 1)$$

B)
$$2lg^2x - 5 \lg x - 7 = 0$$
.

A)
$$\log_{\frac{1}{a}}(6-5x) = -4$$
;

$$\text{B) } \log_6(x^2 + 4x) = \log_6(x^2 + 11);$$

B)
$$3lg^2x - 5lgx + 2 = 0$$
.

A)
$$\log_{\frac{1}{2}}(6-x) = -5$$
;

$$5) \log_8(x^2 + 2x) = \log_8(x^2 - 8)$$

B)
$$5lg^2x + 4lgx - 1 = 0$$
.

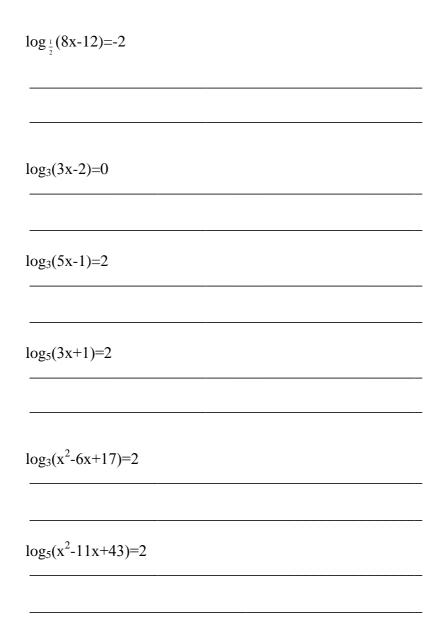
Решите логарифмические неравенства:

A)
$$\log_7(5x-4) \ge 2$$
;

$$\operatorname{E} \log_{0,4}(12x+2) < \log_{0,4}(10x+16)$$

A)
$$\log_{0,5}(x-4) > 1$$
;

$$\text{5) } \log_2(5x-9) \le \log_2(3x+1).$$


$$A) \log_2(3x-4) \le 3;$$

E) $\log_{\frac{1}{2}}(8-x) > \log_{\frac{1}{2}}(4-2x)$.	
A) $\log_{\frac{1}{4}}(x-3) < -1;$	
$\Gamma(\log_{10}(6-r) > \log_{10}(4-2r)$	
$\log_{2,5}(6-x) \ge \log_{2,5}(4-3x)$	

Самостоятельная работа

Решить логарифмические уравнения: $log_6(3x+15)=2$		
$\log_4(2x-6)=3$		

$(\log_2 x)^2 + 8 \log_2 x - 9 = 0$
$(\log_3 x)^2 - 5 \log_2 x + 4 = 0$
Решить логарифмические неравенства:
$\log_2(3x-4) > 5$
$\log_5(8x-3) > 1$
$\log^{\frac{1}{5}}(9-3x) < -2$

Домашняя работа

Решить логарифмические уравнения и неравенства:
$\log_3(x^2+2x-6)=2$
$\log_5(x^2 + 2x + 17) = 2$
$\log_2(x^2-3x+4)=3$
$(\log_8 x)^2 - 3\log_8 x + 2 = 0$
$(\log_2 x)^2 + 5\log_2 x - 6 = 0$
$(\log_4 x)^2$ -5 $\log_4 x$ +6=0

$\log_3(x-1) \leq 2$	
$\log_{0,2}(2-x) > -1$	
$\log_{0,3}(2x+5) \ge \log_{0,3}(x+1)$	
$\log_3(x^2 + 7x - 5) > 1$	
$\lg(x^2+2x+2)<1$	

Тема 23. Производная показательной и логарифмической функции. Число е

Запомни!

- 1) Функция $y = e^x$ дифференцируема на \mathbb{R} , причем $y' = (e^x)' = e^x$
- 2) Функция $y = a^x$ дифференцируема на \mathbb{R} , причем $(a^x)' = a^x ln \, a \, (ln \, x = log_e x$ натуральный логарифм)

$$(a^{x})' = ((e^{lna})^{x})' = (e^{xlna})' = e^{xlna} \cdot lna = a^{x} lna$$

3) Первообразная функции $y=a^x$ на \mathbb{R} — функция $F(x)=\frac{a^x}{lna}$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$\left(\ln x\right)' = \frac{1}{x}$$

Практическая работа

537.	Найдите по таблицам мощью калькулятора)	натуральных логарифмов (или с по-
	a) ln 3, ln 5,6, ln 1,7; в) ln 2, ln 35, ln 1,4;	6) In 8; In 17; In 1,3;
F00		каждой из функций (538—539).
538.	a) $y = 4e^x + 5$;	6) $y = 2x + 3e^{-x}$;
	B) $y=3-\frac{1}{2}e^{x}$;	r) $y = 5e^{-x} - x^2$.
539.	a) $y = e^x \cos x$; B) $y = 3^x - 3x^2$;	6) $y=3e^x+2^x$; r) $y=x^2e^x$.
	B) $y=3^{x}-3x^{2}$;	$\Gamma) y = x^2 e^x.$
540.	Напишите уравнение точке с абсциссой x_0 :	касательной к графику функции f в
	a) $f(x)=e^{-x}$, $x_0=0$;	6) $f(x)=3^x$, $x_0=1$;
	B) $f(x)=e^x$, $x_0=0$;	r) $f(x)=2^{-x}$, $x_0=1$.

541. Найдите общий вид первообразных для функции:

a)
$$f(x)=5e^x$$
; 6) $f(x)=2\cdot 3^x$; B) $f(x)=4^x$; r) $f(x)=\frac{1}{2}e^x+1$.

542. Вычислите интеграл:

a)
$$\int_{0}^{1} 0.5^{x} dx$$
; 6) $\int_{0}^{1} e^{2x} dx$; B) $\int_{-2}^{1} 2^{x} dx$; r) $\int_{-\frac{1}{2}}^{2} 3^{x} dx$.

Найдите производную каждой из функций (549-550).

549. a)
$$y = \ln(2+3x)$$
; 6) $y = \log_{0.3} x + \sin x$;
 B) $y = \ln(1+5x)$; 7) $y = \lg x - \cos x$.

6)
$$y = \log_{0,3} x + \sin x$$
;

2

B)
$$y = \ln(1 + 5x)$$
;

r)
$$y = \lg x - \cos x$$
.

550. a)
$$y = x^2 \log_2 x$$
; 6) $y = \frac{\ln x}{x}$;

B)
$$y=x \ln x$$
; $r) y=\frac{x}{\ln x}$.

551. Найдите общий вид первообразных для функции:

a)
$$f(x) = \frac{3}{7x+1}$$
; 6) $f(x) = \frac{1}{x} - \frac{2}{x+5}$;

B)
$$f(x) = \frac{1}{x+2}$$
, r) $f(x) = \frac{4}{x}$.

552. Напишите уравнение касательной к графику функции f в точке с абсциссой x_0 , если:

a)
$$f(x) = \ln(x+1)$$
, $x_0 = 0$; 6) $f(x) = \lg x + 2$, $x_0 = 1$; 8) $f(x) = 2 \ln x$, $x_0 = e$; 7) $f(x) = \log_2(x-1)$, $x_0 = 2$.

6)
$$f(x) = \lg x + 2, x_0 = 1$$

B)
$$f(x)=2 \ln x$$
, $x_0=e$:

r)
$$f(x) = \log_2(x-1), x_0 = 2$$

553. Вычислите интеграл:

a)
$$\int_{-1}^{7} \frac{2dx}{x}$$
; 6) $\int_{-1}^{1} \frac{dx}{3-2x}$; B) $\int_{0}^{x} \frac{dx}{x}$; r) $\int_{0}^{3} \frac{dx}{3x+1}$.

Самостоятельная работа

Найдит <i>a</i>) <i>y</i> = 5+	те произ	вводную $y = 2^x - \frac{2}{x}$	функі 2 ; ;	ЦИИ: в) y = ln	$x+e^{3x}$;	ε) y=	$3\log_2 x - e^2$
		ние прои	изводн 	ной фун	кции у	$=4x \cdot e$	
		авнение -2x в т			_	-	функции
		вводную б) y = 3 ^x +			$1\frac{x}{2}-e^x$;	e) y=	$e^3 - 8\log_5 x$
Найдит <i>a</i>) <i>y</i> =5	те произ	вводную	функі б) <i>у</i>	$= -x \cdot e^{x}$	2x ,	<i>в</i>) <i>y</i> =	$10^{x} + e^{-x}$
		авнение				фику	функции

Домашняя работа

1 вариант

- 1. а) Дана функция $f(x)=e^x\cos x$. Найдите f'(x), f'(0).
- б) Дана функция $f(x) = \frac{1}{6} \ln(-2x)$. Найдите f'(x), $f'(-\frac{1}{8})$.
- 2. Вычислите площадь фигуры, ограниченной линиями $y=e^x$, y=1, x=2.
- 3. Исследуйте функцию $f(x) = 2x \ln x$.

2 вариант

- 1. a) Дана функция $f(x)=e^x \sin x$. Найдите f'(x), f'(0).
- б) Дана функция $f(x) = \frac{1}{6} \ln(-3x)$. Найдите f'(x), $f'(-\frac{1}{9})$.
- 2. Вычислите площадь фигуры, ограниченной линиями у= $\frac{1}{x}$, y = 1, x = 4.
- 3. Исследуйте функцию $f(x) = xe^x$.

3 вариант

- 1. а) Дана функция $f(x)=e^x+x^{2,5}$. Найдите f'(x),f'(0).
- б) Дана функция $f(x) = \ln(x^2 + 1) 4^x$. Найдите f'(x), $f'(\frac{1}{2})$.
- 2. Вычислите площадь фигуры, ограниченной линиями $y=\sqrt{x}$, y=1, x=9.

3. Исследуйте функцию $f(x) = x^2 e^{2x}$.

Список литературы

- 1. Алгебра и начала математического анализа 10-11 классы.2012.- 464с.
- 2. Колмогоров А. Н. Алгебра и начала анализа., М., "Просвещение", 1990.

Учебное издание

Дьяченко Ольга Викторовна

Рабочая тетрадь по математике

Редактор Лебедева Е.М.

Подписано к печати 28.05.2015 г. Формат 60х84 ¹/_{16.} Бумага офсетная. Усл. п. л. 9,30. Тираж 100 экз. Изд. № 3006.

Издательство Брянского государственного аграрного университета 243365 Брянская обл., Выгоничский район, с. Кокино, Брянский ГАУ