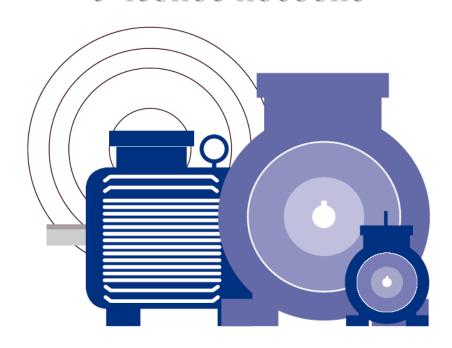
Министерство сельского хозяйства РФ


Федеральное государственное бюджетное образовательное учреждение высшего образования БРЯНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Институт Электроэнергетики и природопользования

Безик В.А., Башлыков В.А., Кубаткина О.В., Ковалев В.В.

Электрические машины

Вращающиеся электрические машины Учебное пособие

Брянская область 2017

УДК621.313 (07) ББК 31.261 Э 45

Электрические машины. Вращающиеся электрические машины: учебное пособие / В. А. Безик, В. А. Башлыков, О. В. Кубаткина, В. В. Ковалев. – Брянск: Изд-во Брянский ГАУ, 2017.-41 с.

Пособие содержит краткие сведения о вращающихся электрических машинах, технические характеристики основных машин используемых в сельском хозяйстве, сведения по монтажу и пуску электродвигателей, основные расчетные формулы. Пособие рекомендуется при изучении дисциплин, связанных с расчетом и использованием вращающихся электрических машин, а также в качестве справочного пособия для инженерно-технических работников. Пособие предназначено для бакалавров и магистров следующих направлений подготовки: 13.03.02 - Электроэнергетика и электротехника, 13.04.02 — Электроэнергетика и электротехника, 15.03.04 — Автоматизация технологических процессов и производств, 35.03.06 - Агроинженерия, 20.03.02 — Наземные транспортно-технологические комплексы.

Рецензент:

д.т.н., профессор кафедры Электроэнергетики и автоматики Кисель Ю.Е. (ФГБОУ ВО Брянский ГАУ).

Рекомендовано к изданию решением методической комиссии института энергетики и природопользования Брянского ГАУ, протокол № 2 от 24.10.2017 года.

- © Брянский ГАУ, 2017
- © Безик В.А., 2017
- © Башлыков В.А., 2017
- © Кубаткина О.В., 2017
- © Ковалев В.В., 2017

1. Общие понятия

Электрическая машина является электромеханическим преобразователем, в котором преобразуется механическая энергия в электрическую или электрическая энергия в механическую.

В зависимости от рода отдаваемого или потребляемого тока электрические машины разделяются на машины переменного и постоянного тока.

Машины переменного тока делятся на синхронные, асинхронные и коллекторные.

В синхронной машине поле возбуждения создается обмоткой, расположенной на роторе и питающейся постоянным током. Обмотка статора соединяется с сетью переменного тока. Обращенная схема, когда обмотка возбуждения расположена на статоре, встречается редко. В синхронной машине обмотка, в которой индуцируется ЭДС и протекает ток нагрузки, называется обмоткой якоря, а часть машины с этой обмоткой называется якорем. Часть машины, на которой расположена обмотка возбуждения, называется индуктором.

Синхронные машины применяются в качестве генераторов и двигателей.

В асинхронной машине поле создается в обмотке статора и взаимодействует с током, наводимым в обмотке ротора.

Асинхронные машины применяются в основном в качестве двигателей.

Машина постоянного тока по своему конструктивному выполнению сходна с обращенной синхронной машиной, у которой обмотка якоря расположена на роторе, а обмотка возбуждения — на статоре. Большинство машин постоянного тока коллекторные. Они могут работать в качестве генераторов или двигателей.

По мощности электрические машины можно разделить на следующие группы.

- Машины большой мощности: коллекторные машины мощностью более 200 кВт; синхронные генераторы мощностью более 100 кВт; синхронные двигатели мощностью более 200 кВт; асинхронные двигатели мощностью более 100 кВт при напряжении более 1000 В.
- Машины средней мощности: коллекторные машины мощностью 1...200 кВт; синхронные генераторы мощностью до 100 кВт, в том числе высокоскоростные мощностью до 200 кВт; асинхронные двигатели мощностью 1...200 кВт; асинхронные машины мощностью 1...400 кВт при напряжении до 1000 В, в том числе двигатели единых серий от 0,25 кВт.
- Машины малой мощности (не вошедшие в вышеперечисленные): двигатели постоянного тока коллекторные и универсальные; асинхронные двигатели, синхронные двигатели и др.

2. Асинхронные машины

Схема асинхронной машины показана на рисунке 1. В схеме асинхронной машины и ее принципе действия есть сходство с трансформатором. Отличие заключается в том, что вторичная обмотка размещается на вращающемся роторе и не связана с внешней сетью. На схеме рисунке 1a эта обмотка состоит из стержней, замкнутых накоротко, что соответствует двигателю с короткозамкнутым ротором, а в двигателях с фазовым ротором она соединяется с внешними сопротивлениями — рисунок 1δ .

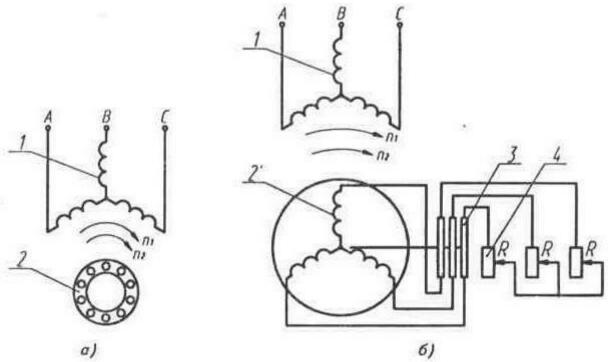


Рисунок 1 – Схемы асинхронной машины:

a) асинхронный двигатель с короткозамкнутым ротором; 6) асинхронный двигатель с фазным ротором; 1 — обмотки статора, 2 — ротор с короткозамкнутыми стержнями, 2 — обмотки фазного ротора, 3 — контактные кольца, 4 — сопротивления в цепи фазного ротора.

Обмотка статора равномерно распределена по его окружности. Обмотки фаз статора соединяются в звезду или в треугольник.

При питании трехфазной обмотки статора трехфазным током, создается вращающееся магнитное поле, частота вращения которого

$$n_1 = 60f_1/p$$

где f_1 — частота тока питающей сети, Γ ц, p — число пар полюсов обмотки статора. Вращающийся магнитный поток Φ индуцирует в обмотках статора и ротора ЭДС E_1 и E_2 . Под действием ЭДС E_2 , в обмотке ротора возникает ток I_2 при взаимодействии которого с магнитным полем создается электромагнитный вращающий момент M. Величина ЭДС E_2 ; и частота ее изменения f_2 зависят от скорости пересечения магнитным полем статора Φ витков обмотки ротора. Частоту вращения поля ротора обозначим n_2 .

Частота пересечения магнитным полем статора обмотки ротора является относительной частотой поля статора относительно ротора и равна разности $n_1 - n_2$. Если разность равна 0, то нет движения поля статора относительно ротора, нет ЭДС E_2 и тока I_2 и вращающего момента M. При увеличении разности $n_1 - n_2$ величины E_2 , I_2 , I_2 и I_3 увеличиваются.

Условием работы асинхронной машины является неравенство частот вращения поля статора и ротора, поэтому машина и называется асинхронной, т. е. несинхронной.

Относительная разность частот вращения поля статора и ротора

$$s=(n_1-n_2)/n_1$$

называется скольжением. Выражение частоты вращения ротора через скольжение:

$$n_2 = n_1(1-s)$$
.

Серии двигателей.

Первая серия асинхронных электродвигателей – серия А – была разработана в 1946-1949 гг. Новая серия А2 была разработана в 1957-1959 гг. с учетом рекомендаций Международной электротехнической комиссии (МЭК).

Электродвигатели серии 4А

На основе международных рекомендаций в странах – членах бывшего Совета экономической взаимопомощи (СЭВ) в 1969-1972 гг. были разработаны новые серии электродвигателей, а в СССР – серия 4A.

Серия включает все двигатели общего назначения мощностью до 400 кВт напряжением до 1000 В. В серии повышена мощность двигателей при тех же высотах оси вращения на 2...3 ступени по сравнению с двигателями серии A02 за счет применения новых материалов и рациональной конструкции. Впервые в мировой практике в серии были стандартизированы показатели надежности. Серия имеет модификации и специализированные исполнения. Пример обозначения типа двигателя:

4AH200M4Y3,

где 4 — номер серии, A — асинхронный, H — степень защиты IP23, для закрытых двигателей обозначение не дается, далее может быть буква A, означающая алюминиевые станину и щиты, X — алюминиевая станина и чугунные щиты, если станина и щиты чугунные, никакого обозначения не дается, 200 — высота оси вращения, мм, M или S, L — условная длина станины.

Далее возможны буквы A или B, обозначающие длину сердечника статора, отсутствие букв означает одну длину в установочном размере, 4 — число полюсов, У — для умеренного климата, 3 — категория размещения.

Специализированные исполнения двигателей по условиям окружающей среды: тропического исполнения T, буква ставится после числа полюсов, например, 4A132S2T2, категории размещения 2 и 5;

для районов с холодным климатом исполнения XЛ, например, 4A132S2XЛ2, категории размещения 2 и 5;

химически стойкого исполнения **X**, например, 2A90L2XУ5, категории размещения 3 и 5; сельскохозяйственного исполнения CX, например, 4A160M4 CXУ2, категории размещения 1-5.

Технические данные двигателей серии 4А приведены в таблицах 1, 2.

Приняты следующие классы изоляции обмоток двигателей:

высота оси вращения 56, 63 мм - E,

высота оси вращения 71...132 мм – В,

высота оси вращения 160...355 мм – F.

Таблица 1 — Технические характеристики асинхронных электродвигателей основного исполнения серии 4A

ТИП	Р, кВт	Скольжение,	КПД (%)	cos φ	$M_{\text{max}}/M_{\text{H}}$	$M_{\scriptscriptstyle \Pi}/M_{\scriptscriptstyle H}$	$M_{min}/M_{\scriptscriptstyle H}$	I_{Π}/I_{H}
1	2	3	4	5	6	7	8	9
		Син	іхронная	частота	а 3000 мин	H ⁻¹		
4AA50A2	0,09	8,6	60	0,7	2,2	2	1,2	5
4AA50B2	0,12	9,7	63	0,7	2,2	2	1,2	5
4AA56A2	0,18	8	66	0,76	2,2	2	1,2	5
4AA56B2	0,25	8	68	0,77	2,2	2	1,2	5
4A63A2	0,37	8,3	70	0,86	2,2	2	1,2	5
4A63B2	0,55	8,5	73	0,86	2,2	2	1,2	5
4A71A2	0,75	5,3	77	0,87	2,2	2	1,2	5,5
4A71B2	1,1	6,3	77,5	0,87	2,2	2	1,2	5,5
4A80A2	1,5	5	81	0,85	2,2	2	1,2	6,5
4A80B2	2,2	5	83	0,87	2,2	2	1,2	6,5
4A90L2	3	5,4	84,5	0,88	2,2	2	1,2	6,5
4A100S2	4	4	86,5	0,89	2,2	2	1,2	7,5
4A100L2	5,5	4	87,5	0,91	2,2	2	1,2	7,5
4A112M2	7,5	2,6	87,5	0,88	2,2	2	1	7,5
4A132M2	11	3,1	88	0,9	2,2	1,6	1	7,5
4A160S2	15	2,3	88	0,91	2,2	1,4	1	7,5
4A160M2	18,5	2,3	88,5	0,92	2,2	1,4	1	7,5
4A180S2	22	2	88,5	0,91	2,2	1,4	1	7,5
4A180M2	30	1,9	90,5	0,9	2,2	1,4	1	7,5
4A200M2	37	1,9	90	0,89	2,2	1,4	1	7,5
4A200L2	45	1,8	91	0,9	2,2	1,4	1	7,5
4A225M2	55	2,1	91	0,92	2,2	1,2	1	7,5
4A250S2	75	1,4	91	0,89	2,2	1,2	1	7,5
4A250M2	90	1,4	92	0,9	2,2	1,2	1	7,5
4A280S2	110	2	91	0,89	2,2	1,2	1	7
4A280M2	132	2	91,5	0,89	2,2	1,2	1	7
4A315S2	160	1,9	92	0,9	1,9	1	0,9	7

Продолжение таблицы 1

	P,	Скольжение,	КПД			Прод	олжение та	Олицы 1
ТИП	кВт	%	(%)	cos φ	$M_{\text{max}}/M_{\text{H}}$	$M_{\scriptscriptstyle \Pi}/M_{\scriptscriptstyle H}$	$M_{min}/M_{_{ m H}}$	I_{Π}/I_{H}
1	2	3	4	5	6	7	8	9
		Син	іхронная	частота	а 1500 мин	H ⁻¹		
4AA50A4	0,06	8,1	50	0,6	2,2	2	1,2	5
4AA50B4	0,09	8,6	55	0,6	2,2	2	1,2	5
4AA56A4	0,12	8	63	0,66	2,2	2	1,2	5
4AA56B4	0,18	8,7	64	0,64	2,2	2	1,2	5
4A63A4	0,25	8	68	0,65	2,2	2	1,2	5
4A63B4	0,37	9	68	0,69	2,2	2	1,2	5
4A71A4	0,55	8,7	70,5	0,70	2,2	2	1,6	4,5
4A71B4	0,75	8,7	72	0,73	2,2	2	1,6	4,5
4A80A4	1,1	6,7	75	0,81	2,2	2	1,6	5
4A80B4	1,5	6,7	77	0,83	2,2	2	1,6	5
4A90L4	2,2	5,4	80	0,83	2,2	2	1,6	6
4A100S4	3	5,3	82	0,83	2,2	2	1,6	6,5
4A100L4	4	5,3	84	0,84	2,2	2	1,6	6
4A112M4	5,5	5	85,5	0,86	2,2	2	1,6	7
4A132S4	7,5	3	87,5	0,86	2,2	2	1,6	7,5
4A132M4	11	2,8	87,5	0,87	2,2	2	1,6	7,5
4A160S4	15	2,7	89	0,88	2,2	1,4	1	7
4A160M4	18,5	2,7	90	0,88	2,2	1,4	1	7
4A180S4	22	2	90	0,9	2,2	1,4	1	7
4A180M4	30	2	91	0,89	2,2	1,4	1	7
4A200M4	37	1,7	91	0,9	2,2	1,4	1	7
4A200L4	45	1,8	92	0,9	2,2	1,4	1	7
4A225M4	55	2	92,5	0,9	2,2	1,2	1	7
4A250S4	75	1,4	93	0,9	2,2	1,2	1	7
4A250M4	90	1,3	93	0,91	2,2	1,2	1	7
4A280S4	110	2,3	92,5	0,9	2	1,2	1	7
4A280M4	132	2,3	93	0,9	2	1,2	1	7
4A315S4	160	2	93,5	0,91	1,9	1	0,9	6,5
4A315M4	200	1,7	94	0,92	1,9	1	0,9	7
4A355S4	250	1,7	94,5	0,92	1,9	1	0,9	7
4A355M4	315	1,7	94,5	0,92	1,9	1	0,9	7

Таблица 2 — Технические характеристики асинхронных электродвигателей с фазным ротором серии 4A

типоразмер	мощ- ность, кВт	Скольже-	КПД (%)	cos φ	$M_{\text{max}}/M_{\text{H}}$	Ток ро- тора, А	Напряжение ротора, В	Масса, кг
1	2	3	4	5	6	7	8	9
		Синхронн	ая час	гота 13	500 мин	-1		
4AK160S4	11	5	86,5	0,86	3	22	305	160
4AK160M4	14	4	88,5	0,87	3,5	29	300	185
4AK180M4	18	3.5	89	0,88	4	38	295	250
4AK200M4	22	2.5	90	0,87	4	45	340	305
4AK200L4	30	2.5	90,5	0,87	4	55	350	325
4AK225M4	37	3.5	90	0,87	3	160	160	415
4AK250SA4	45	3	91	0,88	3	170	230	555
4AK250SB4	55	3	90,5	0,9	3	170	200	595
4AK250M4	71	2.5	91,5	0,86	3	170	250	640
		Синхронн	ая час	гота 10	000 мин	-1 [
4AK160S6	7.5	5	82,5	0,77	3,5	18	300	170
4AK160M6	10	4.5	84,5	0,76	3,8	20	310	200
4AK180M6	13	4.5	85,5	0,8	4	25	325	240
4AK200M6	18.5	3.5	88	0,81	3,5	35	360	300
4AK200L6	22	3.5	88	0,8	3,5	45	330	315
4AK225M6	30	3.5	89	0,85	2,5	150	140	405
4AK250S6	37	3.5	89	0,84	2,5	165	150	540
4AK250M6	45	3	90,5	0,87	2,5	160	180	600
		Синхрон	ная час	тота 7	50 мин	-1		
4AK160S8	5.5	6.5	80	0,7	2,5	14	300	170
4AK160M8	7.5	6	82	0,7	3	16	290	200
4AK180M8	11	4	85,5	0,72	3,5	25	270	260
4AK200M8	15	3.5	86	0,7	3	28	360	300
4AK200L8	18.5	3.5	86	0,73	3	40	300	320
4AK225M8	22	4.5	87	0,82	2,2	140	102	400
4AK250S8	30	4	88,5	0,81	2,2	155	125	540
4AK250M8	37	3.5	89	0,8	2,2	155	148	595

Электродвигатели для привода деревообрабатывающих станков, рабочий инструмент в которых устанавливается непосредственно на вал двигателя. Степень защиты IP54. Осевое смещение вала ротора не превышает 0,08 мм. Возможно одновременное действие радиальной нагрузки и 30% осевой. Двигатели выпускаются с разной длиной конца выступающего вала. Средний ресурс до капитального ремонта не менее 20000

часов, при замене подшипников через 3-5 тысяч часов работы двигателя в зависимости от частоты вращения. Технические характеристики указаны в таблице 3.

Таблица 3 - Электродвигатели для привода деревообрабатывающих станков

Типоразмер	Мощность, кВт	Частота враще- ния, мин ⁻¹	Частота сети, Гц	КПД, %	Cos &	Кратность пускового вого момента	Кратность макси- мального момента	Кратность пуско- вого тока	Средний уровень звука, дБ(A)	Масса, кг
4АМХД 80 А2	1,5	3000	50	78,0	0,85	2,0	2,2	6,5	73	24,0
4АМХД 80 В2	2,2	3000	50	80,0	0,87	2,0	2,2	6,5	73	26,0
4AMXД 90 L2	3,0	3000	50	81,0	0,89	2,0	2,2	6,5	75	32,0
4АМХД 80 А2	1,5	3600	60	78,0	0,84	1,8	2,2	7,8	76	24,0
4АМХД 80 В2	2,2	3600	60	80,0	0,86	1,8	2,2	7,8	76	26,0
4AMXД 90 L2	3,0	3600	60	81,0	0,88	1,8	2,2	7,8	78	32,0
4AMXД 80 A2	2,2	6000	100	76,0	0,88	1,5	2,2	6,5	80	24,0
4AMXД 80 B2	3,0	6000	100	78,0	0,89	1,5	2,2	6,5	85	25,0
4AMXД 90 L2	4,0	6000	100	79,0	0,90	1,5	2,2	6,5	85	32,0

Унифицированная серия асинхронных двигателей Интерэлектро АИ

Серия разработана в рамках международной организации Интерэлектро, объединявшей электротехников стран – бывших членов СЭВ. Координатором работ по созданию серии был СССР.

Двигатели серии имеют ряд мощностей диапазоном от 0,025 до 400 кВт, ряд высот осей вращения – от 45 до 355 мм.

Двигатели с высотами осей вращения до 71 мм выполняются на напряжение 380 В, остальные -380 и 660 В при частоте 50 Гц, в экспортном исполнении -60 Гц.

Обозначения двигателей серии

Пример базового обозначения:

АИР100М4,

где AU — серия, P — вариант увязки мощности с установочными размерами (может быть обозначение C), 100 — высота оси вращения, M — длина корпуса по установочным размерам, 4 — число полюсов.

Пример основного обозначения:

АИРБС100М4НПТ2,

где AИP100M4 — базовое обозначение, B — закрытое исполнение c естественным охлаждением без обдува, C — c повышенным скольжением, H — малошумные, Π — c повышенной точностью установочных размеров, T — для тропического климата, 2 — категория размещения.

Данные двигателей серии АИ базового исполнения приведены в таблице 4.

Таблица 4 — Технические параметры и масса двигателей серии АИ основного исполнения

	1	OCHODIIOI O MC							
Тип	_	номинальная частота	кпд,		е парамет		L	T	
	Р, кВт	вращения, об/мин.	%	cos,φ	I_{Π}/I_{H}	$M_{\rm II}/M_{\rm H}$	M _{max} /M _H	$ m M_{min}/M_{H}$	масса, кг
АИР56А2	0,18	2730	65,0	0,78	5,0	2,2	2,2	1,8	3,5
АИР56В2	0,25	2700	66,0	0,79	5,0	2,2	2,2	1,8	3,8
АИР56А4	0,12	1350	58,0	0,66	5,0	2,2	2,2	1,8	3,6
АИР56В4	0,18	1350	60,0	0,68	5,0	2,2	2,2	1,8	4,2
АИР63А2	0,37	2730	72,0	0,84	5,0	2,2	2,2	1,8	5,2
АИР63В2	0,55	2730	75,0	0,81	5,0	2,2	2,2	1,8	6,1
АИР63А4	0,25	1320	65,0	0,67	5,0	2,2	2,2	1,8	5,1
АИР63В4	0,37	1320	68,0	0,70	5,0	2,2	2,2	1,8	6,0
АИР63А6	0,18	860	56,0	0,62	4,0	2,2	2,2	1,6	4,8
АИР63В6	0,25	860	59,0	0,62	4,0	2,2	2,2	1,6	5,6
АИР71А2	0,75	2820	79,0	0,80	6,0	2,6	2,7	1,6	8,7
АИР71В2	1,10	2800	79,5	0,80	6,0	2,2	2,4	1,6	9,5
АИР71А4	0,55	1360	71,0	0,71	5,0	2,3	2,4	1,8	8,1
АИР71В4	0,75	1350	72,0	0,75	5,0	2,5	2,6	2,4	9,4
АИР71А6	0,37	900	65,0	0,63	4,5	2,1	2,2	1,6	8,6
АИР71В6	0,55	920	69,0	0,68	4,5	1,9	2,2	1,6	9,9
АИР71 В8	0,25	680	58,0	0,60	4,0	1,6	1,9	1,4	9,9
АИР80А2	1,50	2880	82,0	0,85	6,5	2,2	2,6	1,8	12,4
АИР80В2	2,20	2860	83,0	0,87	6,4	2,1	2,6	1,8	15,0
АИР80А4	1,10	1420	76,5	0,77	5,0	2,2	2,4	1,7	11,9
АИР80В4	1,50	1410	78,5	0,80	5,3	2,2	2,4	1,7	13,8
АИР80А6	0,75	920	71,0	0,71	4,0	2,1	2,2	1,6	11,6
АИР80В6	1,10	920	75,0	0,71	4,5	2,2	2,3	1,8	15,3
АИР80А8	0,37	680	58,0	0,59	3,5	2,0	2,3	1,4	12,8
АИР80 В8	0,55	680	58,0	0,60	3,5	2,0	2,1	1,4	14,8
АИР90L2	3,00	2860	83,5	0,88	7,0	2,3	2,6	1,7	19,0
АИР90 L4	2,20	1430	80,0	0,79	6,0	2,0	2,4	2,0	18,1
АИР90 L6	1,50	940	76,0	0,70	5,0	2,0	2,3	1,9	19,0
АИР90 LA8	0,75	700	70,0	0,71	4,0	1,5	2,0	1,5	17,7
АИР90 LB8	1,10	710	74,0	0,72	4,5	1,5	2,2	1,5	20,5
АИР100 S2	4,00	2850	87,0	0,88	7,5	2,0	2,4	1,6	26,0
АИР100 L2	5,50	2850	88,0	0,88	7,5	2,1	2,4	1,6	31,5
АИР100 S4	3,00	1410	82,0	0,82	7,0	2,0	2,2	1,6	23,0
АИР100 L4	4,00	1410	85,0	0,84	7,0	2,1	2,4	1,6	29,2
АИР100 L6	2,20	940	81,5	0,74	6,0	1,9	2,2	1,6	27,0
АИР100 L8	1,50	710	76,0	0,75	3,7	1,6	2,0	1,5	24,0
АИР112М2	7,50	2900	87,5	0,88	7,5	2,0	2,2	1,6	40,0
АИР112М4	5,50	1430	85,5	0,86	7,0	2,0	2,5	1,6	38,5
АИР112МА6	3,00	950	81,0	0,76	6,0	2,0	2,2	1,6	33,4
АИР112МВ6	4,00	950	82,0	0,81	6,0	2,0	2,2	1,6	38,8
АИР112МА8	2,20	700	76,5	0,71	6,0	1,8	2,2	1,4	33,4
АИР112МВ8	3,00	700	79,0	0,74	6,0	1,8	2,2	1,4	39,0
АИР132М2	11,00	2910	87,5	0,88	7,5	1,6	2,2	1,2	60,4
АИР132S4	7,50	1440	86,0	0,83	7,5	2,0	2,5	1,6	53,5
АИР132М4	11,00	1450	87,5	0,79	7,5	2,4	2,9	2,2	66,3
АИР132S6	5,50	960	85,0	0,80	7,0	2,0	2,2	1,6	52,3
АИР132М6	7,50	950	85,0	0,79	7,0	2,0	2,2	1,6	64,5
АИР132S8	4,00	700	83,0	0,70	6,0	1,8	2,2	1,4	52,2
АИР132М8	5,50	700	83,0	0,74	6,0	1,8	2,2	1,4	62,2
АИР160S2	15,00	2920	90,5	0,89	7,0	2,1	3,0	2,0	95,7
АИР160М2	18,50	2920	91,0	0,89	7,0	2,2	3,0	2,0	96,9
АИР160S4	15,00	1460	89,5	0,86	6,5	2,3	2,7	2,0	97,1
АИР160М4	18,50	1460	90,0	0,86	6,5	2,3	2,7	2,0	103,9
АИР160S6	11,00	970	87,5	0,81	6,5	1,9	2,6	1,7	98,3
АИР160М6	15,00	970	88,0	0,84	6,5	2,0	2,6	1,7	113,9
АИР 160S8	7,50	720	86,0	0,72	5,5	1,7	2,3	1,5	86,9
АИР160М8	11,00	720	87,0	0,73	5,5	1,7	2,3	1,5	108,9
АИР180S2	22,00	2930	90,5	0,73	7,0	2,2	2,9	2,0	118,9
АИР 180М2	30,00	2930	92,0	0,89	7,0	2,4	2,9	2,0	137,9
АИР18084	22,00	1460	91,0	0,86	6,8	2,4	2,5	1,6	129,9
АИР 18054	30,00	1460	91,5	0,85	7,0	2,4	2,5	1,7	150,9
АИР 180М4 АИР 180М6	18,50	980	89,5	0,86	6,5	2,4	2,7	1,7	138,9
АИР180М8	15,00	730	88,0	0,74	5,5	1,8	2,4	1,6	138,9

Электродвигатели с повышенным скольжением предназначены для привода механизмов с большой инерционностью, а также механизмов, работающих в повторно-кратковременном (S3) режиме. Скольжение при номинальной нагрузке у этих двигателей выше, чем у базовых, а критическое скольжение составляет около 40%, что достигается за счет повышения сопротивления обмотки ротора. Двигатели унифицированы с основным исполнением: в обозначении имеют дополнительную букву С после названия серии. Технические характеристики указаны в таблице 5.

Таблица 5 — Технические параметры и масса двигателей серии АИ с повышенным скольжением

	Значения параметров										
Тип	Мощность, кВт при S3 ПВ 40%	Номиналь- ная частота вращения, об/мин	кпд,%	cosφ	Крити- ческое скольже- ние, %	Мп/Мн	М max/Ми	Mmin/MH	ln/lu	Масса, кг	
АИРС71А2	1,00	2700	69	0,88		2	2,2	1,6	5,5	8,7	
АИРС71В2	1,20	2770	72	0,83		2	2,2	1,6	5,5	9,5	
АИРС71А4	0,60	1400	69	0,71		2	2,2	1,6	5	8,1	
АИРС71В4	0,80	1350	72	0,75		2	2,2	1,6	5	9,4	
АИРС71А6	0,40	930	62,5	0,7		1,9	2,1	1,5	4,5	8,6	
АИРС71В6	0,63	930	66	0,66		1,9	2,1	1,5	4,5	9,9	
АИРС71В8	0,37	670	50	0,61		1,8	2	1,5	4	9,9	
АИРС80А2	1,90	2840	76	0,8		2,1	2,2	1,6	6,5	12,4	
АИРС80В2	2,50	2800	76	0,86		2,1	2,2	1,6	6,5	15	
АИРС80А4	1,32	1380	69	0,8		2,1	2,2	1,6	5	11,9	
АИРС80В4	1,70	1380	71	0,82		2,1	2,2	1,6	5	13,8	
АИРС80А6	0,75	910	67	0,73		2	2,1	1,6	4	11,6	
АИРС80В6	1,25	890	66,5	0,73		2,1	2,1	1,6	4	15,3	
АИРС80А8	0,45	680	57	0,64		1,4	1,7	1,4	3	12,8	
АИРС8 0В8	0,60	680	60	0,64		1,4	1,7	1,4	3	14,8	
AUPC90L2	3,50	2790	80	0,86		2	2,2	1,6	6,5	19	
АИРС90L4	2,40	1380	77	0,81	40	2,2	2,2	2	6	18,1	
AUPC9 0L6	1,70	900	71	0,72	1 40	2	2,2	1,6	6	19	
AUPC90LA8	0,90	690	69	0,72		1,6	1,9	1,5	3,5	17,7	
АИРС90LB8	1,20	680	67	0,72		1,6	1,9	1,5	3,5	20,5	
АИРС10052	4,80	2810	82	0,86		2	2,2	1,6	7,5	26,0	
АИРС100L2	6,30	2810	82	0,86		2	2,2	1,6	7,5	31,5	
АИРС10054	3,20	1400	77	0,8		2	2,2	1,6	6	23,0	
АИРС100L4	4,25	1400	83	0,78		2,5	2,5	2	6	29,0	
АИРС100L6	2,60	940	76	0,76		2	2,2	1,6	6	27,0	
АИРС1 00L8	1,60	680	69,5	0,64		1,9	2	1,6	5,5	24,0	
АИРС16052	17,0	2860	88,0	0,92		2,6	3,0	2,0	6,9	95,0	
АИРС160М2	20,0	2850	88,5	0,93		2,7	3,0	2,0	7,1	96,9	
АИРС16054	17,0	1400	85,5	0,85		2,8	2,8	2,4	6,0	93,9	
АИРС160М4	20,0	1400	87,0	0,84		2,8	2,8	2,4	6,5	103,9	
АИРС16056	12,0	910	82,5	0,82		2,8	2,8	2,4	5,5	88,9	
АИРС160М6	16,0	900	83,0	0,87		2,5	2,8	2,4	5,5	113,9	
АИРС16058	7,5	690	80,0	0,75		2,5	2,5	2,2	4,5	86,9	
АИРС1 60М8	11,0	690	82,0	0,75		2,8	2,8	2,4	5,0	108,9	

Многоскоростные двигатели предназначены для привода механизмов, требующих ступенчатого регулирования частоты вращения. Технические характеристики указаны в таблице 6.

Таблица 6 – Технические параметры и масса многоскоростных двигателей серии AИ

	<u>'</u>	двигателеи серг		ения пар	раметро	В			
_ +		U							Macca
Тип	Р, кВт	Номинальная частота вращения, об/мин	кпд,%	cos φ	ln/le	Мп/Мн	Мтах/Мн	Mmin/Мн	КГ
	0,19	1380	55,0	0,66	3,5	1,6	1,8	1,0	j
АИР63А4/2	0,265	2640	61,0	0,75	4,0	1,2	1,8	0,8	5,1
AMDESPAIS	0,265	1350	57,0	0,68	3,5	1,6	2,0	1,0	60
АИР63В4/2	0,37	2580	61,0	0,82	4,0	1,2	1,7	0,8	6,0
АИР71А4/2	0,48	1360	69,0	0,76	4,5	1,5	1,9	1,4	8,6
A/II / IA-112	0,62	2780	68,0	0,85	4,5	1,5	1,9	1,3	0,0
АИР71В4/2	0,71	1370	69,0	0,84	4,5	1,75	1,9	1,5	9,4
AVIF7104/2	0,85	2780	68,0	0,86	4,5	1,85	2,0	1,4	2,4
АИР80А4/2	1,12	1410	74,0	0,78	5,0	1,9	2,2	1,6	13,0
AMOUNTIE	1,50	2730	73,0	0,85	5,0	1,9	2,0	1,5	15,0
АИР80В4/2	1,50	1380	75,0	0,75	5,0	2,0	2,0	1,6	15,0
AVII 00D-1/2	2,00	2720	75,0	0,84	5,0	2,0	2,1	1,6	15,5
АИР90L4/2	2,20	1430	79,0	0,83	6,0	1,9	2,4	1,6	19,7
	2,65	2850	76,0	0,82	6,0	2,0	2,4	1,5	1.2,1
АИР9 0L6/4	1,32	930	74,0	0,68	5,0	1,6	1,9	1,5	19,6
12.11.2.2.2.7.1	1,60	1430	74,0	0,85	5,5	1,6	2,1	1,2	,.
AMP90L8/4	0,80	710	62,0	0,60	3,0	1,7	2,0	1,6	19,0
	1,32	1410	75,0	0,86	5,0	1,5	2,0	1,3	, .
AUP100S4/2	3,00	1430	82,0	0,84	5,5	2,1	2,4	1,6	24,2
	3,75	2790	80,0	0,90	5,5	2,0	2,4	1,6	,-
АИР100L4/2	4,00	1400	82,0	0,88	5,5	1,9	2,1	1,6	29,2
	4,75	2820	82,0	0,91	6,0	2,2	2,4	1,6	,-
АИР10056/4	1,70	940	76,0	0,76	4,5	1,3	1,8	1,3	22,5
	2,24	1400	80,0	0,86	5,5	1,3	1,9	1,2	,
АИР100L6/4	2,12	950	77,0	0,73	4,5	1,4	2,0	1,3	27,1
	3,15	1430	80,0	0,86	5,5	1,5	2,1	1,4	,
АИР10058/4	1,00	720	70,0	0,61	4,0	1,2	1,8	1,1	21,5
	1,70	1430	79,0	0,87	5,0	1,1	1,8	1,0	,
AUP100L8/4	1,40	720	72,0	0,60	4,0	1,6	2,0	1,5	26,2
	2,36	1430	81,0	0,89	5,5	1,4	1,9	1,0	-
АИР10058/6	1,00	710	72,0	0,64	5,0	1,4	2,0	1,3	22,0
	1,25	970 710	77,0	0,66	5,5	1,5	2,2	1,0	
AUP100L8/6	1,32		71,0	0,66	4,0	1,6	1,9	1,4	26,0
	1,80	960	76,0	0,73	5,0	1,4	2,0	0,9	
АИР10056/4/2	1,12	940 1440	72,0	0,70 0,74	4,0	1,8	2,0	1,8	320
AVIP 10030/4/2	1,25	2870	72,0 72,0	0,74	5,0	1,4 1,7	2,2 2,2	1,4 1,2	23,0
	1,60	910			7,0				
АИР100L6/4/2	1,40 1,50	1460	74,0 73,0	0,78 0,72	4,5 5,0	1,5	1,9	1,4 1,4	27,0
AVIF 100E07472	2,12	2880	75,0	0,72	5,0	1,6 1,4	2,6 2,3	1,4	1 27,0
	0,63	720	64,0	0,63	3,5	1,4	2,3	1,4	
АИР10058/4/2	1,32	1460	76,0	0,80	5,5	1,4	2,4	1,0	23,5
AZIF 10030/4/2	1,70	2900	75,0	0,90	6,0	1,3	2,4	0,7	23,3
	0,90	710	63,0	0,65	4,0	1,2	1,9	1.2	
АИР100L8/4/2	1,50	1460	78,0	0,81	6,0	1,3	2,4	1,1	28,2
7.711 TO 0EO/4/2	2,10	2880	77,0	0,94	6,0	1,2	2,3	0,8	1 20,2
	0,56	710	54,0	0,48	3,5	1,2	2,3	1,2	
АИР10058/6/4	1,12	940	65,0	0,67	4,5	1,1	1,8	0,8	23,0
10030/0/4	2,80	1410	78,0	0,70	6,0	2,6	3,1	2,5	23,0
	0,71	700	57,0	0,70	3,4	1,8	2,2	1,7	
AUP100L8/6/4	1,20	940	68,0	0,61	4,5	1,7	2,0	1,4	27,5
0020,0,4	3,00	1430	79,0	0,66	7,5	4,0	3,8	3,7	1 -1,7

Продолжение таблицы 6

		Значения параметров													
Тип	Р, кВт	Номинальная частота вращения, об/мин	кпд,%	cosφ	In/IH	Мп/Мн	Мтах/Мн	MmIn/MH	Масса, кг						
A14D112B4074	2,20	710	70,0	0,65	5,0	1,2	1,8	1,0	20.6						
АИР112М8/4	3,60	1420	77,0	0,88	6,0	1,2	1,6	1,0	38,6						
******	11,0	1460	89,5	0,84	7,0	1,6	2,9	1,6							
АИР16054/2	14,0	2790	85,5	0,90	7,0	1,6	2,9	1,0	99,8						
A14D1 COM44C	14,0	1460	89,5	0,86	7,0	1,5	2,9	1,5	103.0						
АИР160M4/2	17,0	2930	86,5	0,91	7,0	1,6	2,9	1,0	103,9						
NUMBER OF CAR	7,5	980	86,5	0,78	6,5	1,8	2,8	1,7							
АИР16056/4	8,5	1460	87,5	0,90	6,0	1,5	2,2	1,3	88,9						
A1401 COM4C/4	11,0	980	87,5	0,79	6.5	1,7	2,8	1,7							
АИР160М6/4	13,0	1460	88,0	0,91	6,0	1,4	2,1	1,4	113,9						
* IAD1 COCO/A	6,0	730	81,0	0,69	5,5	1,8	2,0	1,0	04.0						
АИР16058/4	9,0	1460	84,0	0,88	7,0	1,5	2,0	0,8	86,9						
ALADA CONADZA	9,0	730	81,5	0,71	5,5	1,5	2,0	1,0	1000						
АИР160M8/4	13,0	1460	84,0	0,89	7,0	1,5	2,0	0,8	108,9						
	5,0	970	81,0	0,83	4,5	1,2	1,8	1,1							
AUP16056/4/2	5,5	1470	83,0	0,88	6,5	1,4	2,6	1,0	93,9						
	7,5	2920	82,0	0,90	6,5	1,7	2,8	0,8							
	6,5	970	82,5	0,82	4,5	1,2	2,0	1,1							
АИР160М6/4/2	7,5	1470	84,0	0,86	7,0	1,3	2,8	1,0	103,9						
	10,5	2920	84,0	0,90	7,0	1,4	2,7	0,8]						
	4,0	720	79,0	0,70	4,0	1,1	1,8	1,1							
AUP16058/4/2	5,0	1470	82,5	0,88	6,5	1,2	2,4	1,0	93,9						
	6,5	2920	81,0	0,95	6,5	1,6	2,7	0,8							
	5,0	720	79,5	0,68	4,0	1,2	2,0	1,1							
AUP160M8/4/2	7,5	1470	82,5	0,88	6,5	1,1	2,4	1,0	103,9						
	10,5	2930	82,5	0,90	7,0	1,2	2,6	0,8	1						

Выпускаются специализированные электродвигатели для привода вентиляторов, устанавливаемых в животноводческих и птицеводческих помещениях с искусственной вентиляцией. Они могут быть использованы для работы вне помещения.

Частота вращения двигателей АИРП 80-06 и АИРП 80 А6 может регулироваться в диапазоне 1:6 для различных типов путем регулирования питающего напряжения с помощью тиристорных преобразователей или автотрансформаторов. Двигатели устанавливаются на растяжках. Технические характеристики приведены в таблице 7.

Электродвигатели для привода моноблочных центробежных, циркуляционных и вихревых насосов могут применяться во всех отраслях промышленности и аграрного комплекса, в том числе помещениях с химически активной средой. Их характеристики приведены в таблице 8.

Технические характеристики *однофазных общепромышленных* электродвигателей серии АИРЕ приведены в таблице 9. Таблица 7- Электродвигатели АИР для привода осевых вентиляторов в животноводческих и птицеводческих помещениях

Типоразмер	Мощность, кВт	Частота враще- ния, мин ⁻¹	КПД, %	Скольжение, %	Cos φ	$\frac{M_{_{\mathrm{NYCN}}}}{M_{_{\mathrm{NOM}}}}$	$\frac{M_{\max}}{M_{nom}}$	$\frac{I_{nycn}}{I_{nom}}$	Средний уровень звука, дБ(A)		Частота сети, Гц	Напряжение, В
АИРП 80-О6	0,25	1000	66,0	10	0,76	1,4	1,6	4,0	55	9,0	50; 60	220; 380
АИРП 80 А6	0,37	1000	67,5	10	0,78	1,4	1,6	4,0	55	9,9	50; 60	220; 380
АИРП 80 A8/4	0,18/ 0,55	750/ 1500	56/ 75	8/ 5	0,62/ 0,70	1,5/ 2,6	1,9/ 3,2	3,5/ 7,0	61	10,9	50	380

Таблица 8 - Электродвигатели для привода моноблочных насосов

Типоразмер	Мощность, кВт	Частота вращения, мин ⁻¹	КПД, %	Cos _{\phi}	$\frac{M_{_{\mathit{NNN}}}}{M_{_{\mathit{NOM}}}}$	$\frac{M_{\text{max}}}{M_{\text{nom}}}$	$\frac{I_{\rm nycu}}{I_{\rm nom}}$	Средний уровень звука, дБ(A)	Масса,
АИР 80 А2 Ж, Ж2, Ж3	1,5	3000	81,0	0,85	2,0	2,2	7,0	65	13,1
АИР 80 В2 Ж, Ж1, Ж2, Ж3	2,2	3000	82,0	0,87	2,0	2,2	7,0	65	15,7
АИР 80 А4 Ж3	1,1	1500	75,5	0,77	2,0	2,2	5,0	58	12,4
АИР 80 В4 Ж, Ж3	1,5	1500	77,5	0,80	2,0	2,2	5,5	58	14,8
АИР 90 L2 Ж, Ж3	3,0	3000	83,5	0,90	2,0	2,2	7,0	68	20,0
АИР 90 L4 Ж, Ж3	2,2	1500	80,5	0,82	2,0	2,2	6,5	58	19,4
АИР 100 S2 Ж, Ж3	4,0	3000	84,0	0,88	2,0	2,2	6,0	77	23,5
АИР 100 S4 Ж, Ж3	3,0	1500	80,0	0,74	1,8	2,2	6,0	69	22,6

Таблица 9 - технические характеристики однофазных общепромышленных электродвигателей серии AИPE

Тип двигателя	Номин. мощн., кВт	Номин. частота вращ., мин ⁻¹	Масса, кг	Номин. ток при U=380B, A	Номин. момент, Н м	$\frac{M_{_{\mathit{NNN}}}}{M_{_{\mathit{NOM}}}}$	$\frac{I_{nycn}}{I_{nom}}$	$\frac{M_{\max}}{M_{nom}}$	Динамич. мо- мент инерции ротора, кг м2	КПД, %	Cos φ
АИРЕ 80 А2	1,1	2820	14,0	8,0	3,7	0,40	4,9	2,5	0,0019	69,0	0,91
АИРЕ 80 А4	0,75	1420	13,0	5,1	5,0	0,45	4,0	2,3	0,0035	69,0	0,96
АИРЕ 80 В2	1,5	2840	15,5	9,5	5,0	0,45	4,5	2,2	0,0022	74,0	0,97
АИРЕ 80 В4	1,1	1410	14,7	7,1	7,4	0,47	3,8	2,3	0,0037	72,0	0,98
АИРЕ 90 L2	2,2	2880	17,0	14,0		0,25	5,0	2,0		78,5	0,98
АИРЕ 90 L4	1,5	1410	16,0	8,0		0,30	3,0	1,5		72,0	0,98

Асинхронные *крановые электродвигатели* с фазным ротором серии МТ предназначены для привода крановых и других механизмов, работающих в кратковременных и повторно-кратковременных режимах, в том числе с частыми пусками и электрическим торможением. Двигатели также используются в механизмах длительного режима работы.

Паспортные данные крановых асинхронных двигателей с короткозамкнутым ротором приведены в таблице 10.

Паспортные данные крановых асинхронных двигателей с фазным ротором приведены в таблице 11.

Таблица 10 - Технические характеристики асинхронных крановых электро-

двигателей с короткозамкнутым ротором

Тип двигателя	Мощ- ность, кВт	M _{Makc} / M _H	КПД, %	Коэффициент мощности	Высота оси вращения, мм	Класс нагревостой- кости
МТКФ 311-6	11	2,9	77,5	0,76	180	F
MTKH 311-6	11	2,9	81	0,77	180	Н
МТКФ 311-8	7,5	2,7	73,5	0,71	180	F
MTKH 311-8	7,5	2,7	78,5	0,69	180	Н
МТКФ 312-6	15	3,2	81	0,78	180	F
MTKH 312-6	15	3,2	83	0,78	180	Н
МТКФ 312-8	11	2,9	78	0,74	180	F
MTKH 312-8	11	2,9	81,5	0,7	180	Н
МТКФ 411-6	22	3,3	82,5	0,79	225	F
MTKH 411-6	22	3,3	82,5	0,79	225	Н
МТКФ 411-8	15	3,2	80	0,71	225	F
MTKH 411-8	15	3,2	80	0,71	225	Н
МТКФ 412-6	30	3,3	83,5	0,78	225	F
MTKH 412-6	30	3,3	83,5	0,78	225	Н
МТКФ 412-8	22	3,2	80,5	0,69	225	F
MTKH 412-8	22	3,2	80,5	0,69	225	Н
4MTKM 200 LA6	22	3,3	87	0,8	200	Н
4MTKM 200 LA8	15	3,2	83	0,7	200	Н
4MTKM 200 LB6	30	3,3	87,5	0,85	200	Н
4MTKM 200 LB8	22	3,2	83	0,75	200	Н
4MTKM 225 M6	37	3	85	0,86	225	Н
4MTKM 225 M8	30	2,8	84	0,75	225	Н
4MTKM 225 L6	55	3,4	86	0,87	225	Н
4MTKM 225 L8	37	2,8	85	0,78	225	Н
MTKH 511-6	37	3	85	0,86	250	Н
MTKH 511-8	30	2,8	84	0,75	250	Н
MTKH 512-6	55	3,4	86	0,87	250	Н
MTKH 512-8	37	2,8	85	0,78	250	Н

Таблица 11 - Технические характеристики асинхронных крановых электро-двигателей с фазным ротором

	ar .		С фазпы	м ротором		
	Мощность, кВт			V and dryyyyaya	Drygoma gov	Класс
Тип двигателя	при ПВ	$M_{\text{Makc}}/M_{\text{H}}$	КПД, %	Коэффициент мощности	Высота оси вращения, мм	нагревостойкости
	40%	IVIH		мощности	вращения, мм	патревостоикости
МТФ 311-6	11	3,0	80	0,71	180	Н
MTH 311-6	11	3.0	80.0	0.71	180	Н
МТФ 311-8	7,5	3,0	76	0,65	180	Ф
MTH 311-8	7,5	3.0	76.0	0.65	180	Н
МТФ 312-6	15	3,0	82	0,74	180	Ф
MTH 312-6	15	3.0	82.0	0.74	180	Н
МТФ312-8	11	3,0	78,5	0,74	180	Ф
MTH 312-8	11	3,0	78.5	0.65	180	Н
МТФ 411-6	22	2,8	86	0,76	225	Ф
MTH 411-6	22	2,8	86	0,76	225	Н
МТФ 411-8	15	3,2	83	0,62	225	Ф
MTH 411-8	15	3,2	83	0,62	225	Н
МТФ 412-6	30	28	87	0,79	225	Ф
MTH 412-6	30	2.8	87.0	0.79	225	Н
МТФ 412-8	22	3,0	83	0,7	225	Ф
MTH 412-8	22	3,0	83	0,7	225	Н
4MTM 200 LA6	22.0	2.8	86.0	0.76	200	Н
4MTM 200 LA8	15.0	3.2	83.0	0.62	200	Н
4MTM 200 LB6	30.0	2.8	87.0	0.79	200	Н
4MTM 200 LB8	22.0	3.0	83.0	0.7	225	Н
4MTM 225 M6	37.0	3.0	87.0	0.81	225	Н
4MTM 225 M8	30.0	2.9	85.0	0.72	225	Н
4MTM 225 L6	55.0	2.9	88.0	0.81	225	Н
ΜΚΑΦ 225 L6	55.0	2.9	88.0	0.81	225	Н
4MTM 225 L8	37.0	2.9	86.0	0.74	225	Н
MTH 511-6	37.0	3.0	87.0	0.81		Н
MTH 511-8	30.0	2.9	85.0	0.72		Н
MTH 512-6	55.0	2.9	88.0	0.81		Н
MTH 512-8	37.0	2.9	86.0	0.74		Н
4MTM 280 S6	75.0	3.2	89.0	0.86	280	Н
4MTM 280 L6	110.0	3.5	91.0	0.85	280	Н
4MTM 280 M8	55.0	3.2	89.0	0.81	280	Н
4MTM 280 L8	75.0	3.5	91.0	0.80	280	Н
4MTM 280 S10	45.0	3.0	86.0	0.73	280	Н
4MTM 280 M10	60.0	3.2	88.0	0.74	280	Н
4MTM 280 L10	75.0	3.0	89.0	0.73	280	Н
MTH 611-10	45.0	3.0	86.0	0.73		Н
MTH 612-10	60.0	3.2	88.0	0.74		Н
MTH 612-10	110.0	3.5	91.0	0.85		Н

В настоящее время начат выпуск электродвигателей серии 7AИ. Они имеют ту же, что и для двигателей серии АИ систему обозначений. Технические характеристики двигателей серии 7AИ приведены в таблице 12.

Таблица 12 - Технические характеристики электродвигателей серии 7АИ базового исполнения

ейзеве	i o none	лнения				•	,		•
ТИП	Р, кВт	Ток, А при 380В	частота вращения, мин ⁻¹	КПД (%)	cos φ	$M_{\text{max}}/M_{\text{H}}$	$M_{\scriptscriptstyle \Pi}/M_{\scriptscriptstyle H}$	I_{Π}/I_{H}	Вес кг
7AИ100L6	2.2	5.6	920	76	0.76	2.1	2.1	6.5	38
7АИ100S4	3	6.8	1410	82.0	0.82	2.3	2.3	7.0	34
7AИ132S4	7.5	15.6	1440	87.2	0.84	2.3	2.3	7.0	75
7АИ132S6	5.5	12.9	960	84.0	0.77	2.1	2.1	6.5	71
7АИ160М2	18.5	34.7	2930	90.0	0.90	2.3	2.2	7.5	141
7АИ160М4	18.5	36.0	1450	90.5	0.86	2.3	2.2	7.5	150
7AИ160S2	15	28.8	2930	89.0	0.89	2.3	2.2	7.5	118
7АИ160S4	15	30.1	1460	89.0	0.85	2.3	2.2	7.5	125
7АИ160S6	11	24.2	970	87.5	0.79	2.1	2.0	6.5	134
7АИ160S8	7.5	17.8	720	85.5	0.75	2.0	2.0	6.0	137
7АИ160М6	15	33	965	89.0	0.78	2.1	2.1	7.0	154
7АИ160М8	11	24.9	710	87.0	0.77	2.0	2.0	6.6	152
7AИ180S2	22	41	2940	90.5	0.90	2.3	2.0	7.5	170
7АИ180S4	22	43.2	1470	91.0	0.85	2.3	2.2	7.5	185
7АИ180М2	30	55	2940	91.4	0.90	2.3	2.0	7.5	203
7АИ180М4	30	56.3	1470	91.4	0.86	2.3	2.2	7.2	201
7AИ200L2	45	82.3	2950	92.3	0.90	2.3	2.0	7.5	282
7АИ200L4	45	85	1470	92.6	0.87	2.3	2.2	7.2	280
7АИ200М2	37	67.9	2950	92.0	0.90	2.3	2.0	7.5	255
7АИ200М6	22	44.7	980	90.0	0.83	2.1	2.1	7.0	260
7АИ200М4	37	70.9	1460	91.0	0.92	2.3	2.2	7.2	248
7АИ225М4	55	101.8	1470	92.0	0.89	2.3	2.2	7.2	331
7АИ315М2	200	348	2975	94.8	0.92	2.2	1.8	7.1	1082
7АИ315S2	160	279	2975	94.6	0.92	2.2	1.8	7.1	1024
7АИ315S4	160	287.8	1480	94.9	0.89	2.2	2.1	6.9	1000
7АИ315S6	110	206	980	94.0	0.86	2.0	2.0	6.7	1045
7АИ315S8	90	178	735	93.8	0.83	2.0	1.8	6.6	1050
7АИ315М4	200	359.4	1480	95.0	0.89	2.2	2.1	6.9	1128
7АИ315М6	132	244	980	94.2	0.87	2.0	2.0	6.7	1194
7АИ315М8	110	217	735	94.0	0.82	2.0	1.8	6.4	1132
7АИ355М4	315	556	1490/1480	95.6	0.90	2.2	2.1	6.9	2698
7АИ355М6	200	365/356,4	990	94.7	0.88	2.0	1.9	6.7	2020
7АИ355М8	160	315/307,2	740	94.2	0.82	2.0	1.8	6.4	2048
7АИ355S4	250	443/439,5	1490/1480	95.3	0.90	2.2	2.1	6.9	2050
7АИ355S6	160	292/286,6	990	94.5	0.88	2.0	1.9	6.7	1696
7AИ355S8	132	261/255,3	740	93.7	0.82	2.0	1.8	6.4	1689

3. Расчетные данные для определения основных параметров асинхронных двигателей

Harrisanarra namerra	Двигателеи	Пачилятия оборгания
Наименование величин	Формула	Принятые обозначения
Потребляемая активная	$P_1 = \sqrt{3}U_1 I_1 \cos \varphi$	$U_1.I_1$ - линейные значения
мощность из сети, кВт		напряжения, В, и тока двига-
Потребляемая реактив-	$Q_1 = \sqrt{3}U_1 I_1 \sin \varphi$	теля, А;
ная мощность, кВАр		P_2 – полезная мощность на
Полезная мощность на	$P_{_2}=P_{_1}\cdot\eta$	валу, кВт;
валу		М,η -вращающий момент
Потребляемый двигате-	$P_2 \cdot 10^3$	кГм, КПД двигателя;
лем ток, А	$I_1 = \frac{P_2 \cdot 10^3}{\sqrt{3}U_1 \eta \cos \varphi}$	n_{HOM} - номинальная скорость
Вращающий момент	<u> </u>	вращения ротора, мин-1
двигателя, кГ м	$M = 975 \frac{P_2}{n_{nom}}$	
Синхронная скорость	$n_1 = 60f_1 / p$	n_1 -скорость вращения маг-
вращения поля, об/мин		нитного поля статора, мин ⁻¹ ;
		f_I - частота питающего тока, $\Gamma_{\rm H}$;
		р- число пар полюсов машины
Скольжение двигателя	$s = \frac{n_1 - n}{n}$	n_1 -скорость вращения маг-
		нитного поля статора, мин ⁻¹ ;
Скорость вращения ро-	$n_1 = n_1(1-s)$	n -скорость вращения ротора
тора, об/мин	1(")	при нагрузке, мин ⁻¹ ;
ЭДС обмоток статора и	$E_1 = 4.44k_{ool} w_1 f_1 \Phi$	$k_{o61} k_{o62}$ - обмоточные коэффи-
ротора, В	$E_2 = 4.44k_{o62}w_2f_2\Phi$	циенты статора и ротора, рав-
Коэффициент трансфор-		ные произведению коэффици-
	$k_e = \frac{w_1 k_{o\delta 1}}{w_2 k_{o\delta 1}}$	ентов укорочения; k_v - шага и
мации по напряжению и	$W_2K_{o\bar{o}1}$	распределения обмотки;
по току	_	W_1 W_2 - число витков обмоток
	$k_{i} = \frac{m_{1}w_{1}k_{o\delta1}}{m_{2}w_{2}k_{o\delta2}}$	статора и ротора;
	$m_2 w_2 k_{o o 2}$	m_1 m_2 - числа фаз в обмотках
		статора и ротора.
		У двигателей с фазным рото-
		ром m_2 =3, у двигателей с ко-
		роткозамкнутым ротором m_2 =
Параметры схемы заме-	II II	, т.е. числу пазов в роторе $z_k r_k x_k$ - полное, активное и
щения, Ом	$z_k = rac{U_{\phi 1}}{I_k} = rac{U_{\phi 1}}{I_H};$	· ·
щепил, Ом	R II	индуктивное сопротивления КЗ двигателя, Ом;
	$r_k = \frac{\Delta P_k}{3I_{\mu}^2}$	I _п - пусковой ток, A;
	$^{\kappa}$ $3I_{\scriptscriptstyle H}^{\scriptscriptstyle 2}$	-
	$r_k = r_1 + r_2'$	ΔP_k - суммарные потери в ме-
	$x_k = x_1 + x_2';$	ди статора и ротора двигате- ля, Вт;
	$r_2' = r_2 k_e k_i$	
	$x_2' = x_2 k_e k_i$	r_1 x_1 - активное и индуктив-
	2 - 2 - e - 1	ное сопротивления обмоток
		статора, Ом;

		$\mathbf{r}_{2}^{\prime} \mathbf{x}_{2}^{\prime}$ _активное и индуктивное
		сопротивления ротора, приве-
		денные к обмотке статора,
		Ом;
Ток холостого хода, А	$I = I \begin{pmatrix} \sin \alpha & 1 & \cos \alpha \end{pmatrix}$	I _н соsφ- номинальный ток и
	$I_{x} = I_{H} \left(\sin \varphi - \frac{1}{2k_{M}} \cos \varphi \right)$	коэффициент мощности,
Критическое скольжение	$s_k = s_H \left(k_M + \sqrt{k_M^2 + 1} \right)$	определяемый по паспорту;
1	$S_k - S_H (\kappa_M + \sqrt{\kappa_M + 1})$	sinф - коэффициент реактив-
Уравнение вращающего	2 <i>M</i>	ной мощности;
момента	$M = \frac{2M_{\kappa}}{\frac{s}{s_k} + \frac{s_k}{s_k}}$	k _м - коэффициент перегрузоч-
Montenia	$\frac{s}{s_k} + \frac{s_k}{s}$	ной способности;
Скольжение двигателя		s _н - скольжение при номи-
при введении добавочно-	$s_2 = s_H \frac{r_1 + r_{\text{dof}}}{r_2}$	нальной нагрузке;
го сопротивления в ро-	, 2	
тор		
КПД двигателя при вве-	$\eta_2 = \eta_1 - s_2 + s_H$	
дении добавочного со-		
противления в ротор		
Уравнение вращающего	$M = M$ \longrightarrow 2	$S_{\mathrm{kp.дo6}}$ - критическое скольже-
момента при добавочном	$M = M_{\text{Marc}} \frac{2}{\frac{s_{\text{kp.dof}}}{s} + \frac{s}{s}}$	ние двигателя при включении
сопротивлении в цепи	$S = S_{kp.,qoo}$	добавочного сопротивления в
ротора		цепь ротора
		$s_{kp.\partial o\delta} = s_{kp} \frac{r_2 + r_{\text{Mo}\delta}}{r_2}$
		r_2

4. Синхронные машины

Схема синхронной машины показана на рисунке 2. Синхронная машина отличается от асинхронной тем, что ток в обмотке ротора появляется не при вращении ее в магнитном поле статора, а подводится к ней от постороннего источника постоянного тока. Статор синхронной машины выполнен так же, как и асинхронной и на нем обычно расположена трехфазная обмотка. Обмотка ротора образует магнитную систему с тем же числом полюсов 2p, что и у статора. Она создает магнитный поток возбуждения и называется обмоткой возбуждения. Вращающаяся обмотка ротора соединяется с внешней цепью источника постоянного тока с помощью контактных колец и щеток. При вращении ротора с частотой n_2 его магнитное поле возбуждения наводит в статоре ЭДС E_1 , частота которой

$$f_1 = (p \cdot n_2)/60$$

При подсоединении обмотки статора к нагрузке протекающий по ней ток будет создавать магнитный поток, частота вращения которого

$$n_1 = 60f_1/p$$

Из сравнения этих выражений видно, что $n_1 = n_2$ т. е. магнитные поля статора и ротора вращаются с одинаковой частотой, поэтому такие машины называются синхронными.

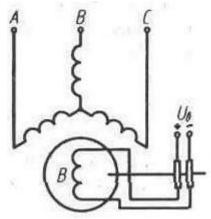


Рисунок 2 - Схема синхронной машины:

B — обмотка возбуждения, U_{θ} — напряжение В цепи возбуждения Результирующий магнитный поток создается совместным действием обмоток возбуждения и статора и вращается с той же частотой, что и ротор.

Обмотка якоря в синхронной машине – обмотка, в которой индуцируется ЭДС и к которой присоединяется нагрузка.

Индуктор в синхронной машине – часть машины, на которой расположена обмотка возбуждения.

В схеме на рисунке 2 статор является якорем, а ротор – индуктором, но может быть и обращенная схема, в которой статор – индуктор и ротор – якорь.

Синхронная машина может работать генератором или двигателем.

В машине с неподвижным якорем применяются две разновидности ротора: явнополюсный ротор (имеет явно выраженные полюсы), неявнополюсный ротор (не имеет явно выраженных полюсов).

Постоянный ток в обмотку возбуждения синхронной машины может подаваться от специального генератора постоянного тока, установленного на валу машины и называемого возбудителем, или от сети через полупроводниковый выпрямитель.

Наибольшее распространение получил генераторный режим работы синхронных машин, и почти вся электроэнергия вырабатывается синхронными генераторами.

Синхронные двигатели применяются при мощности более 600 кВт и до 1 кВт как микродвигатели.

Синхронные генераторы на напряжение до 1000 В применяются в агрегатах для автономных систем электроснабжения. Данные некоторых таких генераторов приведены в таблице 8. Агрегаты с этими генераторами могут быть стационарными и передвижными. Большинство агрегатов применяются с дизельными двигателями, но приводом их могут быть газовые турбины, электродвигатели и бензиновые двигатели.

Таблица 13 – Синхронные явнополюсные генераторы для автономных энергетических систем

	· · · · · · · · · · · · · · · · · · ·	9/		
Тип генератора	Рн, кВт	<i>U</i> _H , B	/,, A	п, об/мин
CF2-85/45-12	314	400	361	500
СГД103-8	100	400/230	180/314	750
СГД2-17-36-16УХЛ4	630	400	1140	375
СГД2-17-44-16УВ-04	630	400	1140	375
OC-92	100	400/230	180/314	1500
ECC-52-4	5	400/230	9/15,7	1500
ECC-91-4	50	400/230	90/157	1500
ГСФ-100М	100	400/230	181/314	1500
Для бензоэлектрі	ических агре	гатов, с само	возбуждени	ем
ΓΑБ-8-T/230-M	8	230	20	750
ΓΑБ-8-T/400-M	8	400	11,5	750
AD-8-1/400-M	8	400	11,5	/3

Генераторы синхронные бесщеточные серии ГС. Предназначены для продолжительного режима работы в стационарных и передвижных электроустановках в качестве источника трехфазного тока аварийного электроснабжения; быстрого ввода в действие и приема нагрузки; параллельной работы с промышленной сетью и другими генераторами; специального электроснабжения потребителей, требующих высокое качество электрической энергии.

Технические характеристики генераторов серии ГС приведены в таблицах 14, 15, 16.

Таблица 14 - Основные технические характеристики генераторов синхронных бесщёточных ГС-8, ГС-16 , ГС-24 и ГС-30-50

Поположни		тип генератора				
Параметры	ГС-8	ГС-16	ГС-24	ГС-30-50		
1. Номинальная мощность, кВт	8	16	24	30		
2. Напряжение, В	230(400)		400			
3. Частота тока, Гц		4	50			
4. Номинальный коэффициент мощности, cosф		0,8 (индуктивный)				
5. Номинальный ток, А	14,5	29	43	54		
6. КПД, %	83,0	86,0	88,0	90,4		
7. Частота вращения, об/мин	1500					
8. Режим работы	S1 (продолжительный)					
9. Система возбуждения	бесщёточная					
10. Установка напряжения U _н , %	от -10 до +5					

Продолжение таблицы 14

11. Установившиеся отклонение напряжения					
при изменении нагрузки от 0 до номиналь-			±1		
ной U _н , %					
12. Отклонение напряжения в процессе про-					
грева до установившейся температуры от U _н ,			0,5		
%					
13. Переходное отклонение напряжения при					
сбросе или набросе нагрузки U _н , %:			±10		
□ 50%, номинальной					
□ 100%, номинальной	±20				
при этом время восстановления напряжения,		0,5 (пр	и набросе)		
с (не более)		0,1 (п	ри сбросе)		
14. Коэффициент небаланса линейных			1		
напряжений при холостом ходе, % (не более)	$\frac{1}{2}$				
15. Коэффициент искажения синусоидаль-					
ной кривой линейного напряжения U _н , % (не	e 5				
более)					
20. Масса, кг.	146	200	214	288	

Таблица 15 - Основные технические данные и характеристики генераторов ГС-60М1 и ГС-100М1

Oavanyu ia wanauanni i	Тип ген	ератора	
Основные параметры	ГС-60М1	ГС-100М1	
1	2	3	
1. Номинальная мощность, кВт	60	100	
2. Номинальное напряжение, В	4	00	
3. Ток, А	108	180	
4. Частота тока, Гц	50		
5. Частота вращения, об/мин	15	500	
6. Коэффициент мощности(cos φ)	0,8(при отстающем токе))		
7. Уставка напряжения,% от Uн	от минус 10 до +5		
8. Установившееся отклонение напряжения при изменении нагрузки от 0 до номинальной, $\%$ от $U_{\rm H}$	измене- ±1		
9. Переходное отклонение напряжения при сбро-			
се/набросе номинальной нагрузки от 0 до номинальной, % от Uн, при этом время восстановления напряжения в зону регулирования, с	±25 не более 2,0		
10. Коэффициент полезного действия, %	90,0	90,6	
11. Класс изоляции	Н ГОСТ 8865-93		
12. Режим работы	S1 ГОСТ 183-74 (продол- жительный)		

Таблица 16 - Основные технические характеристики генераторов синхронных бесщёточных серии ГС-60, ГС-100, ГС-200 и ГС-315

еникропиви осещего ивих серии г с оо,	100,1	C 200 H I	0 313	-
Параметры\наименование	ГС-60	ГС-100	ГС-200	ГС-315
1. Номинальная мощность, кВт	60	100	200	315
2. Напряжение, В		4	.00	
3. Частота тока, Гц		4	50	
4. Номинальный коэффициент мощности, cosф		0,8 (инду	уктивный)
5. Номинальный ток, А	108	180	360	570
6. КПД, %	91,7	92,5	94	95
7. Частота вращения, об/мин		1.5	500	
8. Режим работы	S	1 (продол	жительнь	ій)
9. Система возбуждения	бесщёточная			
10. Установка напряжения U _н , %	от -10 до +5			
11. Установившиеся отклонение напряжения при изменении нагрузки от 0 до номинальной U _н , %	±1			
12. Отклонение напряжения в процессе прогрева до установившейся температуры от U _н , %	0,5			
13. Переходное отклонение напряжения при сбросе или набросе нагрузки U _{ном} , %: □ 50%, номинальной □ 100%, номинальной	±10 ±20			
при этом время восстановления напряжения, с (не более)	0,3 (при набросе) 0,3 (при сбросе)			
14. Коэффициент небаланса линейных напряжений при холостом ходе, % (не более)	1			
19. Масса, кг.	424	542	890	1230
19. Wideou, Kr.	121	5 12	070	1230

5. Основные расчетные формулы по синхронным машинам

Определяемый	формула	обозначения
параметр		
Частота токов ста-	$f_1 = n_2 p/60$	n_2 - частота вращения ро-
тора		тора,
		p - число пар полюсов.
ЭДС возбуждения	$E_0 = 4.44 f_1 \Phi w_1 k_{oo1}$	f_I - частота токов статора,
синхронной маши-	0 1 1 001	arPhi - магнитный поток,
ны		w_I - число витков обмотки
		статора,
		$k_{o ar{o} 1}$ - обмоточный коэф-
		фициент статора.
электромагнитный	$mUF \qquad mU^2 \begin{pmatrix} 1 & 1 \end{pmatrix}$	θ - угол рассогласования
момент синхрон-	$M_{_{A}} = \frac{m_{_{1}}U_{_{1}}E_{_{0}}}{\omega_{_{1}}x_{_{d}}}\sin\theta + \frac{m_{_{1}}U_{_{1}}^{2}}{2\omega_{_{1}}}\left(\frac{1}{x_{_{q}}} - \frac{1}{x_{_{d}}}\right)\sin 2\theta$	полей статора и ротора,
ной машины	$\omega_1 x_d$ $2\omega_1 \left(x_q x_d\right)$	ω_{l} - синхронная скорость
		вращения,

		U_1 - напряжение статора m_1 - число фаз статора, x_q , x_d - внутренние сопротивления по поперечной и продольной осям
электромагнитная мощность син- хронного генера- тора	$P_{_{9M}} = \frac{m_1 U_1 E_0}{x_d} \sin \theta + \frac{m_1 U_1^2}{2} \left(\frac{1}{x_q} - \frac{1}{x_d} \right) \sin 2\theta$	
ударный ток ко- роткого замыкания	$I_{\kappa. \text{\it Hau6}.} = \frac{E_0}{x_d^{\prime\prime}}$	$oldsymbol{\mathcal{X}}_d^{\prime\prime}$ - сверхпереходное сопротивление
ток короткого за- мыкания	$I_k' = \frac{E_0}{x_d'}$	$\mathcal{X}_d^{'}$ - переходное сопротивление
установившийся ток короткого за- мыкания	$I_{\kappa.ycm.} = \frac{E_0}{x_d}$	\mathcal{X}_d - внутреннее сопротивление по продольной оси

$$T_{\ni} = \frac{1}{2\pi \cdot f \cdot s_{\nu}},$$

$$M = rac{2 \cdot M_K \cdot \left(1 + a \cdot \left| s_K \right| \right)}{rac{s}{\left| s_K \right|} + rac{\left| s_K \right|}{s} + 2 \cdot a \cdot \left| s_K \right|},$$
 где $a = rac{R_1}{R_2'}$,

$$M = \frac{2 \cdot M_K}{\frac{S_a}{S_{*K}} + \frac{S_{AK}}{S_{*K}}}, \qquad M_K = \frac{3 \cdot U_H^2}{2 \cdot \omega_{0H} \cdot (R_1 + \sqrt{R_1^2 + X_K^2})},$$

$$\beta = \frac{2 \cdot M_K}{\omega_0 \cdot s_{AK}},$$
 модуль жесткости механической характеристики

6. Машины постоянного тока

Схема машины постоянного тока показана на рисунке 3. Обмотка якоря 2 расположена на роторе и представляет собой замкнутую многофазную обмотку, подключенную к коллектору, состоящему из коллекторных пластин 3, изолированных друг от друга, и щеток A и B. Коллектор связывает обмотку якоря c внешней цепью нагрузки при работе машины генератором или c сетью питания при работе двигателем. Обмотка возбуждения располагается на полюсах статора и присоединяется к независимому источнику постоянного тока или к якорю. Магнитный поток возбуждения Φ_B этой обмотки неподвижен в пространстве.

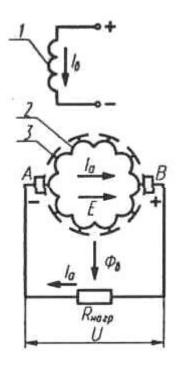


Рисунок 3 - Схема машины постоянного тока:

1 — обмотка возбуждения, 2 — обмотка якоря, 3 — пластины коллектора, A, B — щетки, Φe — магнитный поток возбуждения.

При вращении обмотки якоря в неподвижном магнитном поле в ней индуцируется ЭДС с частотой

$$f_2=p\cdot n/60$$

Коллектор осуществляет согласование частоты f_2 с частотой сети постоянного тока $f_1=0$, т: е. преобразует переменную ЭДС, индуцированную в обмотке якоря, в постоянную ЭДС между щетками A и B коллектора, и во внешней цепи протекает постоянный ток.

При холостом ходе машины магнитный поток создается только обмоткой возбуждения. При работе машины под нагрузкой обмотка якоря создает свой магнитный поток.

Реакция якоря машины постоянного тока — воздействие магнитного поля якоря на магнитное поле машины. В результате реакции якоря магнитное поле машины искажается, что ведет к искрению под щетками. Кроме того, под действием реакции якоря магнитный поток машины при насыщенной магнитной цепи уменьшается, что приводит к уменьшению ЭДС по сравнению с ее значением при холостом ходе.

Для исключения этого явления делают некоторые изменения в конструкции машины, но действенной мерой является применение компенсационной обмотки, которая располагается в пазах главных полюсов и включается последовательно в цепь якоря таким образом, чтобы ее намагничивающая сила была направлена встречно с намагничивающей силой якоря и компенсировала ее действие. Компенсационная обмотка применяется в машинах средней и большой мощности.

Генераторы постоянного тока

Свойства генераторов зависят от способа питания их обмоток возбуждения, и в зависимости от этого они подразделяются на группы:

- 1 генераторы с независимым возбуждением, обмотка возбуждения которых получает питание от независимого источника;
- 2 генераторы с параллельным возбуждением, обмотка возбуждения которых присоединяется параллельно обмотке якоря;
- 3 генераторы с последовательным возбуждением, обмотка возбуждения которых включается последовательно с обмоткой якоря;
- 4 генераторы со смешанным возбуждением, у которых применяются обмотки параллельная и последовательная.

Двигатели постоянного тока

Свойства двигателей, как и генераторов, различаются в зависимости от способа включения обмотки возбуждения. Применяются двигатели с последовательным возбуждением – рисунок 4, с параллельным возбуждением – рисунок 5а, со смешанным возбуждением – рисунок 5б.

Новым поколением двигателей постоянного тока являются двигатели серии 4П. Они различаются:

1 — по регулировочным свойствам — с нормальным регулированием частоты вращения — до 1:5, и с широким регулированием — до 1:1000;

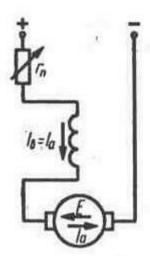


Рисунок 4 - Схема двигателя с последовательным возбуждением:

 R_{π} — сопротивление регулирующего реостата цепи последовательного возбуждения.

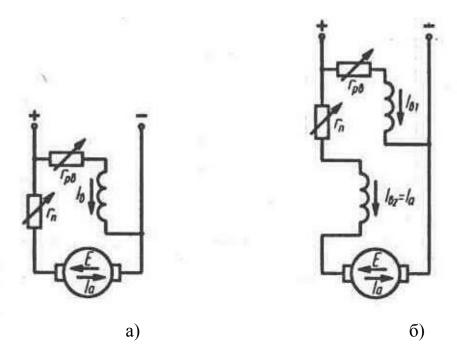


Рисунок 5 — Схемы двигателей с параллельным (a) и смешанным (б) возбуждением.

2 – по типу конструкции: закрытые со степенью защиты IP44; защищенные со степенью защиты IP23;

3 – по условиям эксплуатации:

нормальным, соответствующим значениям климатических факторов внешней среды УХЛ4 и в части воздействия механических факторов внешней среды – группе М1;

тяжелым условиям эксплуатации (УХЛЗ и М8), соответствующим работе во вспомогательных механизмах металлургического производства и др.

Для большинства двигателей номинальное напряжение -110 и 220 В, диапазон частот вращения -750...4000 об/мин.

Таблица 17 - Структура условного обозначения электродвигателей серии 4П

4Π	Б	80	A	2	Γ	O4
серия	степень защиты и	высота	условная	условная	с тахоге-	климатическое ис-
	способ охлажде-	оси вра-	длина кор-	длина сер-	нерато-	полнение и катего-
	ния: Б – закрытое	щения	пуса по	дечника	ром (без	рия размещения:
	с естественным		МЭК 72-1	якоря: 1 –	него –	УХЛ4 – умерен-
	охлаждением; О		(A, B, S, L,	первая	пропуск)	ный и холодный
	– закрытое с		M)	длина, 2 –		климат; О4 – об-
	наружным обду-			вторая		щеклиматическое
	вом от вентиля-			длина		исполнение
	тора на валу дви-					
	гателя					

Данные двигателей серии 4П показаны в таблице 18.

Таблица 18 - Технические характеристики электродвигателей постоянного тока серии 4Π

	ка сери		1	1		
Тип Двигателя	Номинальная мощность, кВт		Номинальное напряжение,	Ток якоря, А		Номинальная Частота вращения,
	УХ4	04	В	УХЛ4	04	мин-1
1	2	3	4	5	6	7
	0,25	0,225	110	3,5	3,2	1000
	0,23	0,223	220	1,8	1,6	1000
	0,37	0,33	110	5,0	4,5	1500
4ПО80А2		0,22	220	2,5	2,25	
	0,55	0,50	110	7,0	6,3	2200
			220 110	3,5 9,4	3,1 8,5	
	0,75	0,67	220	4,7	4,2	3000
			110	4,8	4,3	
	0,37	0,33	220	2,4	2,07	1000
	0.55	0.50	110	7,4	6,7	1,500
4T(000D1	0,55	0,50	220	3,7	3,3	1500
4ПО80В1	0,75	0,675	110	9,4	8,5	2200
	0,73	0,073	220	4,7	4,2	2200
	1,1	1,0	110	13,0	12,0	3000
	1,1	1,0	220	6,5	5,9	3000
	0,18	0,16	110	2,8	2,52	1000
		3,13	220	1,4	1,26	1000
	0,25 0,225	110	3,4	3,0	1500	
4ПБ80А2		,	220	1,7	1,5	
	0,37	0,37 0,33	110 220	4,6 2,3	4,1 2,1	2200
	0,55 0,50		110	7,0	6,3	3000
		0,50	220	3,5	3,1	
		0.007	110	3,4	6,3	
	0,25	0,225	220	1,7	3,1	1000
	0.27	0.22	110	4,8	3,0	1500
4ПБ80В1	0,37	0,33	220	2,4	1,5	1500
411D0UD1	0,55	0,50	110	6,8	4,4	2200
4ΠΟ100S1	0,55	0,50	220	3,4	2,2	2200
	0,80	0,72	110	9,2	6,1	3000
	0,7	J, , 2	220	4,6	3,1	2000
	0,37	0,37 0,33	110	5,0	4,5	750
		,	220	2,3	2,1	
	0,55 0,50	110 220	7,3	6,6	1000	
	0,75 0,67	110	3,5	3,15 8,3	1500	
		220	9,2 4,5	4,05		
			110	12,8	10,2	
	1,1	1,1 1,0	220	6,4	5,8	2200
	1.6	110	19,0	17,2	2000	
	1,6	1,6	220	9,5	8,6	3000

Продолжение таблицы 18

Тип Двигателя	Номинальная мощность, кВт		Номинальное напряжение, В	Ток якоря, А		жение таолицы то Номинальная Частота вращения,
	УХ4	04		УХЛ4	04	мин ⁻¹
1	2	3	4	5	6	7
	0,55	0,55	110	7,4	6,6	750
	,	,	220	3,7	3,3	
	0,75	0,675	110 220	10,0 5,0	9,0 4,5	1000
			110	12,7	11,4	
4ΠO100S2	1,1	1,0	220	6,5	5,85	1500
	1,5	1,35	110	17,4	15,7	2200
	1,5	1,33	220	8,7	7,8	
	2,2	2,0	110	25,2	22,7	3000
	2,2	2,0	220	12,2	11,0	3000
	0,75	0,675	110	9,8	8,8	750
	0,73	0,073	220	4,9	4,4	730
	1,1	1,0	110	13,8	12,4	1000
	1,1	1,0	220	6,9	6,2	1000
4ΠO100L1	1,5	1,35	1 35	17,4	15,7	1500
	1,5	1,33	220	8,7	7,8	
	2,2	2,0	110	25,4	22,9	
	2,2		220	12,7	11,4	
	3,0	2,7	220	16,4	14,8	3000
	0,25	0,225	110	3,0	2,8	750
		0,223	220	1,7	1,58	750
	 	0,33	110	4,8	4,3	1000
		0,55	220	2,4	2,2	1000
4ПБ100S1		0,50	110	6,6	6,0	1500
IIIDIOOSI		0,50	220	3,3	3,0	1500
	0,75	1,675	110	8,6	7,8	2200
	0,73	1,075	220	4,3	3,9	2200
	1,1	1,0	110	12,8	11,9	3000
	1,1		220	6,4	5,8	2000
	0.37	0,37 0,33	110	5,0	4,5	750
4ПБ100S2			220	2,5	2,2	,,,,
	0,5 0,45 0,75 0,675 1,1 1,0	110	6,0	5,4	1000	
		220	3,0	2,7	1000	
		0,675	110	9,0	8,2	1500
		2,070	220	4,5	4,1	1300
		1,0	110	12,6	11,3	2200
		1,1 1,0	220	6,3	5,7	
	1,5 1,35	110	16,6	15,0	3000	
		1,55	220	8,3	7,5	

Продолжение таблицы 18

Тип Двигателя	мощн кl	альная ность, Вт	Номинальное напряжение, В	ток я	коря, А	жение таолицы то Номинальная Частота вращения, мин ⁻¹
1	УX4 2	3	4	УХЛ4 5	6	мин 7
1	<u></u>	3	110	6,0	3,0	,
	0,45	0,405	220	3,0	2,7	750
	0.6	0.54	110	7,6	6,8	1000
	0,6	0,54	220	3,8	3,4	1000
4ПБ100L1	1 1	1.0	110	13,2	11,9	1500
	1,1	1,0	220	6,6	5,9	1500
	1,3	1 17	110	15,0	13,5	2200
	1,5	1,17	220	7,5	6,8	2200
	1,8	1,62	220	9,8	8,8	3000
	1,5	1,35	110	18,2	16,4	1000
	1,5	1,33	220	9,0	8,1	1000
4ΠΟ112M1	2,2	2,0	220	12,5	11,3	1500
	3,0	2,7	220	17,0	15,3	2200
	4,0	3,6	220	22,1	19,9	3000
	1,5	1,35	220	9,7	8,7	750
	2,2	2,0	220	12,9	11,6	1000
4ПО112М2	2,5	2,25	220	28,0	25,2	1500
41101121012	3,0	2,7	220	17,0	15,3	1500
	4,0	3,6	220	21,3	19,5	2200
	5,5	5,0	220	29,0	26,1	3000
	0,55	0.5	110	6,8	6,1	750
		0,5	220	3,4	3,0	
	0.75	0.675	110	9,0	8,1	1000
	0,75	0,675	220	4,5	4,0	1000
4000110041	1.2	1 17	110	15,2	13,8	1500
4ПБ112М1	1,3	1,17	220	7,6	6,9	1500
	1.5	1.05	110	17,0	15,3	2200
	1,5	1,35	1)	8,5	7,6	
	2.2	2.2	110	24,0	21,6	2000
	2,2	2,0	220	12,0	10,8	3000
4ПБ112М2	1.0	0.0	110	11,6	10,4	1000
	1,0	0,9	220	5,8	5,2	
	1.5	1 25	110	16,5	14,85	1500
	1,5	1,35	220	8,0	7,2	
	2.2	2.0	110	23,2	20,8	2200
	2,2	2,0	220	11,6 10,5	2200	
	3,0	2,7	220	16,2	14,6	3000

Универсальные коллекторные двигатели

Широко применяются в устройствах автоматики и в бытовых машинах. Питание двигателей может осуществляться как от источников переменного однофазного тока, так и от источников постоянного тока. По принципу устройства двигатель сходен с двигателем последовательного возбуждения. Отличие заключается в конструкции магнитной системы и в том, что катушки его обмотки возбуждения состоят из двух секций с промежуточными выводами — рисунок 8. Секционирование обмотки делается потому, что при работе на переменном токе из-за падения напряжения в индуктивном сопротивлении обмоток частота вращения двигателя оказывается меньше, чем на постоянном токе. Для выравнивания скоростей при работе на постоянном токе включаются все витки обмотки возбуждения, а при работе на переменном токе только часть их.

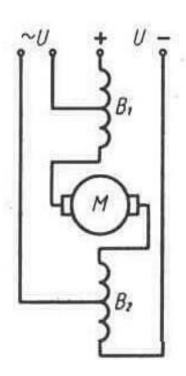


Рисунок 6 - Схема универсального коллекторного микродвигателя: B1,B2 — обмотки возбуждения.

7. Формулы для определения основных параметров машин постоянного тока

Наименование величин	Формула	Принятые обозначения
Мощность, кВт	P = UI	I – ток машины, А;
		U – внешнее напряжение, В;
Токи генератора и дви-	$I_{\Gamma} = I_a - i_B$	I_a – ток якоря;
гателя, А	$I_{\text{\tiny JB}} = I_{\text{\tiny a}} + i_{\text{\tiny B}}$	i _a - ток параллельной обмотки
		возбуждения, А;
Внешнее напряжение,	$U=E-I_a\Sigma R_a$	ΣR_a - сумма сопротивлений
В	$U=E-I_a\Sigma R_a$	якорной цепи, Ом;
		Е – ЭДС машины, В;
ЭДС, В	$E = \frac{N}{a} \cdot \frac{p}{60} n\Phi$	N - число проводников об-
		мотки якоря;
	$E = C_e n\Phi$	а – число пар параллельных
	$C_e = \frac{Np}{a60}$	ветвей в обмотке якоря;
	$C_e = a60$	р – число пор полюсов;
		n – скорость вращения,
		об/мин;
Сопротивление якор-	$\Sigma R_a = R_s + R_c + R_{DOO}$	Ф - магнитный поток пары
ной цепи, Ом		полюсов, вебр;
		$R_{\rm g}$, $R_{\rm c}$, $R_{\rm доб}$ - сопротивление
		обмотки якоря, последова-
		тельной обмотки возбужде-
		ния и добавочных полюсов,
		Ом;
Ориентировочное зна-	$\sum R_a = \beta (1 - \eta_{HOM}) \frac{U_{HOM}}{I_{HOM}}$	Значение коэффициента в
чение сопротивления	\simeq " I_{HOM}	двигателей различного типа
цепи якоря, Ом		возбуждения:
		а) для независимого и парал-
		лельного возбуждения $\beta = 0.5$;
		б) для смешенного $\beta = 0.6$;
		в) для последовательного β =
		0,75;
КПД двигателя и гене-	$oldsymbol{\eta}_{J\!I\!B} = rac{P_2}{IJI}$	ΣΔР - Сумма потерь в ма-
ратора	01	шине, кВт;
	$\eta_{AB} = 1 - \frac{\sum \Delta P}{UI}$	ΔP_k - потери холостого хода
	UI	машины или постоянные по-
	$\eta_{\Gamma} = 1 - \frac{\sum \Delta P}{UI + \sum \Delta P}$	тери, кВт;
	$\eta_{\Gamma} = 1 - \frac{\overline{UI} + \sum \Delta P}{II}$	ΔP_a - потери на возбуждение,
	–	кВт;

Продолжение таблицы

	продолжение таолицы
$\sum \Delta P = \Delta P_x + k_3 \Delta P_{uq} + k_3^2 \Delta P_k$	ΔР -механические потери на
$\Delta P_{x} = \Delta P_{R} + \Delta P_{Mex} + \Delta P_{CT} + \Delta P_{gourn}$	трение в подшипниках и о
	коллектор, кВт;
$k_3 = \frac{-2}{P}$	ΔР - магнитные потери в ста-
AD = I AII	ли якоря, кВт;
$\Delta I_{u_i} - I_H \Delta U_{u_i}$	ΔР - вентиляционные потери,
	кВт;
	ΔР - добавочные потери в
	некомпенсированных маши-
	нах;
	$\Delta P = 1\%$ Рв компенсирован-
	ных 0,5 %, кВт
$\Delta P_{\kappa} = I_{a\mu}^2 \sum (R_a - R_c)$	к ₃ - коэффициент загрузки;
	ΔU =2B для графитовых ще-
	ток;
	ΔU =0,6В для металлографит-
	ных;
$M = 975 \frac{P_{2H}}{}$	См - конструктивная посто-
$n_H = 373$	янная момент
$M_H = C_M \Phi I_a$	Φ – магнитный поток, вебер
$C = \frac{C_e}{C_e}$	
$C_e = 1.05C_M$	
$U = \sum_{a} R_{a}$	
$n = \frac{1}{C_a \Phi} - \frac{1}{C_e \Phi} I_a$	
	$\Delta P_{x} = \Delta P_{B} + \Delta P_{Mex} + \Delta P_{CT} + \Delta P_{Genm}$ $k_{3} = \frac{P_{2}}{P_{2H}}$ $\Delta P_{uq} = I_{H} \Delta U_{uq}$ $M_{H} = 975 \frac{P_{2H}}{n_{H}}$ $M_{H} = C_{M} \Phi I_{a}$ $C_{M} = \frac{C_{e}}{1.05}$

8. Выбор электродвигателей

Тип, мощность и частота вращения двигателя для данного механизма обычно известны по паспорту установленного на нем двигателя, а если неизвестны, то потребная мощность двигателя рассчитывается по специальным формулам для каждого механизма.

Частота вращения двигателя должна быть равна частоте. вращения, необходимой для приводимого механизма, если их валы соединяются непосредственно, или должна быть больше потребной частоты вращения механизма с учетом уменьшения ее редуктором, установленным между валами двигателя и механизма.

Для выбора электродвигателя надо знать режим работы механизма, который он будет приводить в движение, и условия среды, в которой будут работать механизм с двигателем.

Могут быть следующие режимы работы в соответствии с режимами работы приводимых механизмов.

- S1 номинальный режим работы, при котором двигатель работает достаточно длительно с номинальной мощностью при достижении установившейся температуры.
- S2 кратковременный режим с длительностью периода неизменной номинальной нагрузки 10, 30, 60 и 90 мин.
- S3 повторно-кратковременный режим с продолжительностью включения ПВ = 15, 25 и 60%, продолжительность одного цикла принимается равной 10 мин.
- S4 повторно-кратковременный с частыми пусками, с $\Pi B = 15, 25, 40$ и 60%, с числом включений в час 30, 60, 120 и 240 при коэффициенте инерции FI = 1,2; 1,6; 2; 2,5; 4; 6,3 и <math>10, где коэффициент инерции FI отношение момента инерции нагрузки к моменту инерции ротора двигателя.
- S5 повторно-кратковременный с частыми пусками и электрическим торможением с $\Pi B = 15, 25, 40$ и 60%, с числом включений в час 30, 60, 120 и 240 при коэффициенте инерции FI = 1,2; 1,6; 2; 2,5; 4.
- S6 перемежающийся, с $\Pi B = 15, 25, 40$ и 60%, продолжительность одного цикла 10 мин.
- S7 перемежающийся с частыми реверсами при электрическом торможении, с числом реверсов в час 30, 60, 120 и 240 при коэффициенте инерции FI = 1,2; 1,6; 2; 2,5; 4.
- S8 перемежающийся с двумя или более частотами вращения, с числом циклов в час 30, 60, 120 и 240 при коэффициенте инерции FI = 1,2; 1,6; 2; 2,5 и 4.

Зная потребные мощность и частоту вращения двигателя, можно его выбрать по каталогу с ближайшей большей мощностью по сравнению с расчетной, но выбирать нужно из двигателей такого исполнения, которое соответствует условиям внешней среды, где будет установлен двигатель, и режиму работы механизма.

Если нет двигателя в исполнении, соответствующем внешней среде, то приходится применять двигатель в нормальном исполнении, но тогда нужно принять меры для защиты его от влияния внешней среды (будка, навес, обертка целлофаном и т. д.), при этом важно не нарушить нормального охлаждения двигателя при работе.

9. Монтаж двигателей

Двигатель небольшой мощности, поступающий вместе с механизмом, обычно установлен на раме и соединен передачей с механизмом.

Двигатели большой мощности для транспортировки снимаются и перевозятся отдельно. Для них также готово место на механизме или специальная рама, которая укрепляется болтами, приваривается и заливается бетоном. Монтаж двигателя в таких случаях заключается в установке его на подготовленное место, что делается силами собственного электрохозяйства или при большом объеме работ силами специализированных монтажных организаций. При этом двигатель укрепляется, присоединяется к механизму через имеющуюся передачу и присоединяется к электрической сети. Остальные работы выполняются при наладке.

При монтаже двигателя, прежде всего, обращается внимание на положение осей валов двигателя и механизма. Если валы соединяются непосредственно, то их оси должны лежать на одной линии. Это лучше всего проверить по положению торцовых частей полумуфт: если они параллельны, то оси лежат на одной линии, при этом также должны совпадать боковые части полумуфт. Положение оси двигателя при креплении его на лапах можно регулировать подкладками под лапы около болтов крепления. При фланцевом креплении двигателя правильное положение осей обеспечивается равномерной затяжкой болтов крепления. Для предупреждения откручивания гаек и ослабления крепления двигателя под гайки подкладываются сначала обычные плоские шайбы, а на них пружинные. При отсутствии пружинных шайб могут применяться вторые гайки — контргайки.

Замена двигателей

Замена двигателей производится, когда они выходят из строя и снимаются для капитального ремонта. Сама замена не сложна, если готов такой же двигатель для замены. Но в электрохозяйстве может быть установлено множество двигателей различных типов и мощностей, поэтому для каждого двигателя может не быть такого же для замены.

При отсутствии для замены двигателя той же серии можно его заменить двигателем другой серии, при этом полезно знать взаимозаменяемые двигатели разных серий. В таблице 19 приводятся пары взаимозаменяемых двигателей серии A02 и 4A с одинаковыми диаметрами концов валов и окружностями крепления фланцев фланцевых двигателей.

Таблица 19 – Взаимозаменяемые двигатели

Типоразмер двигателя серии AO2	Соответствующий типоразмер двигателя серии 4A 4A80	
AO2-21		
AO2-31	4A100	
AO2-41	4A112	
AO2-51	4A132	
AO2-61	4A160S, M, 2 полюса	
AO2-71	4A160S, M, 4, 6, 8 полюсов 4A180S, M, 2 полюса	
» AO2-81	4A200L, M, 4, 6, 8 полюсов	
AO2-91	4A280S, M, 2 полюса	

У последней пары двигателей не совпадают диаметры окружностей отверстий крепления фланцев. У двигателей серии 4А буквы S, M или L, M обозначают условные длины статора, при которых диаметры валов одинаковы, указаны число полюсов обмотки статора, при которых диаметры валов одинаковы.

У остальных близких по мощности и частоте вращения двигателей диаметры валов не совпадают. При этом не следует пытаться заменить только статор, потому что у разных серий двигателей, хотя они близки по параметрам, статоры разные.

Подготовка двигателей к включению в сеть и к работе

После монтажа нового двигателя вместе с новым механизмом или после замены двигателя производится его подготовка к включению с целью выявления неисправностей и дефектов монтажа не только двигателя, но и электрического и механического оборудования, с ним связанного.

При больших объемах работ подготовка к включению производится при наладке электрического и механического оборудования силами специализированных пуско-наладочных организаций по специальной программе.

При подготовке двигателей к включению и к работе производится:

- -внешний осмотр;
- -проверка схемы соединения обмоток;
- -измерение сопротивления изоляции
- -пробный пуск двигателя;
- -проверка работы двигателя на холостом ходу и под нагрузкой.

Внешний осмотр

При внешнем осмотре проверяются:

- соответствие данных паспорта электродвигателя проекту, механизму и условиям окружающей среды в месте работы двигателя;
- отсутствие механических повреждений корпуса, коробки выводов, вентилятора охлаждения;
- отсутствие повреждений подводящих проводов (нарушений изоляции, скрытых под изоляцией обрывов и изломов);
- возможность вращения вала от руки, отсутствие заеданий и торможений; враще-

ние ротора проверяется воздействием на деталь, установленную на валу или, при ее недоступности, на вентилятор двигателя наличие заземляющих проводников от электродвигателя до места присоединения к сети заземления.

Проверка схемы соединения обмоток

Большинство двигателей в коробках зажимов имеют шесть выводов, соответствующих началам и концам их фазных обмоток.

Обычно выводы всех фаз обмотки статора двигателя расположены в коробке зажимов согласно рисунка 2а. Такое расположение дает возможность получить соединение фазных обмоток статора в звезду при соединении горизонтально перемычками нижних зажимов и в треугольник при соединении вертикальных пар зажимов (рисунок 7 б, в).

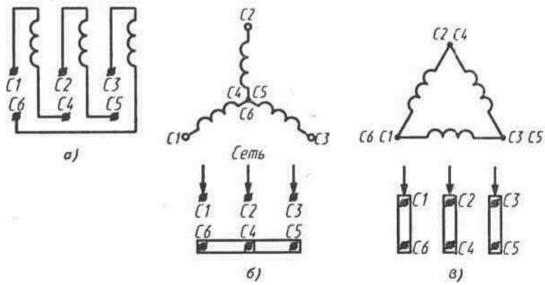


Рисунок 7 - Выводы обмоток статора трехфазного асинхронного электродвигателя: a) схема присоединения начал и концов обмоток к зажимам колодки в выводной коробке; δ) схема включения обмоток статора в звезду и соединение выводных зажимов; ϵ 0 схема включения обмоток статора в треугольник и соединение выводных зажимов.

В некоторых двигателях обмотки фаз статора соединены в звезду и в коробке зажимов находятся только выводы С1, С2 и С3.

Следует учесть, что выводные концы обмоток фаз двигателя одеваются на шпильки и прижимаются гайками, которые могут быть слабо затянуты, поэтому нужно проверять крепление выводных концов их пошатыванием. При слабом креплении этих концов нужно отсоединять подводящие провода и перемычки и затягивать гайки крепления выводных концов обмотки двигателя.

Измерение сопротивления изоляции

Величина сопротивления изоляции электрических машин должна быть не менее 1 кОм на 1 В номинального напряжения машины.

Пробный пуск двигателя

Электродвигатель включают на 2...3 с и проверяют:

- направление вращения;
- работу вращающихся частей двигателя и вращающихся и движущихся частей механизма;
- действие пусковой аппаратуры.

При любых признаках неисправности электрической или механической части двигатель останавливается и неисправности устраняются.

Нужное направление вращения механизма бывает на нем обозначено стрелкой. Нужно также помнить, что при правильном направлении вращения рабочих колес турбомашин (насосов, вентиляторов и т. д.) их лопатки загнуты назад относительно направления вращения.

Правильное направление вращения двигателей транспортирующих машин (транспортеров, шнековых и ковшовых подъемников и др.) определяется по движению их рабочих органов.

Для изменения вращения двигателя достаточно отсоединить от зажимов два провода, подводящих напряжение к двигателю, поменять их местами и снова присоединить. Обычно это делается на выходе пускового аппарата.

Кратковременное включение повторяют 2-3 раза, увеличивая продолжительность включения.

Проверка электродвигателя на холостом ходу и под нагрузкой

Проверку электродвигателя на холостом ходу производят при отсоединенном механизме. Если отсоединить механизм нельзя, то проводится проверка при ненагруженном механизме. Продолжительность проверки - 1ч.

При этом проверяют нагрев подшипников, корпуса двигателя, наличие вибрации, характер шума подшипников.

При ненормальном шуме подшипников и их перегреве двигатель приходится разбирать и устранять причину. При невозможности устранить причину ненормальной работы подшипника он заменяется.

При повышенном нагреве корпуса двигателя (большем, чем у других нормально работающих двигателей) он останавливается и производится проверка прилегания контактов в аппаратах, через которые подводится напряжение к двигателю, проверка плотности затягивания зажимов проводов, начиная от выводных концов в коробке двигателя.

При исправности цепи, подводящей напряжение к двигателю, и его повышенном нагреве он должен отправляться в капитальный ремонт. Перед этим у него должно быть проверено соответствие обозначений выводных концов фазных обмоток, измерено сопротивление обмоток постоянному току, что делается при наладке опытными специалистами.

После проверки двигателя на холостом ходу начинается его проверка под нагрузкой. При нормальной работе двигателя в течение 20...30 мин с механизмом далее продолжается его обкатка вместе с механизмом не менее 8 ч. При этом прирабатываются подвижные детали механизмов, проверяется на нагрев электрооборудование, выявляются его слабые места. Режим обкатки определяется механиками, производившими монтаж технологического оборудования.

Способы пуска в ход асинхронных двигателей

Схемы пуска двигателей в ход должны предусматривать создание большого пускового момента при небольшом пусковом токе и, следовательно, при небольшом падении напряжения при пуске. При этом может требоваться плавный пуск, повышенный пусковой момент и т. д.

На практике применяются следующие способы пуска:

- непосредственное присоединение к сети прямой пуск;
- понижение напряжения при пуске;
- включение сопротивления в цепь ротора в двигателях с фазовым ротором.

Прямой пуск применяется для двигателей с короткозамкнутым ротором. Для

этого они проектируются так, чтобы пусковые токи, протекающие в обмотке статора, не создавали больших механических усилий в обмотках и не приводили к их перегреву. Но при прямом пуске двигателей большой мощности в сети могут возникать недопустимые падения напряжения. Такое может быть в маломощной сети или при большом удалении от подстанции пускаемого двигателя.

В маломощной сети условия пуска двигателя ухудшаются для самого двигателя, ухудшается работа уже включенных двигателей и ламп накаливания, поэтому должны быть ограничения по мощности двигателя в зависимости от вида нагрузки сети и количества пусков двигателя.

Литература

- 1. Епифанов А.П. Электрические машины: учеб. для вузов. СПб.: Лань, 2006.
- 2. Беспалов В.Я., Котеленец Н.Ф. Электрические машины: учеб. пособие для вузов. М.: Академия, 2006.
- 3. Епифанов А.П., Епифанов Г.А. Электрические машины: учеб. пособие для вузов. СПб.: Лань, 2017. 368 с.
- 4. Кацман М.М. Электрические машины: учеб. для СПО. М.: Высш. шк., 2002.
- 5. Сукманов В.И. Электрические машины и аппараты: учеб. для ссузов. М.: Колос, 2001.
- 6. Иванов-Смоленский А.В. Электрические машины. В 2 т. Т. 1: учеб. для вузов. М.: МЭИ, 2006.
- 7. Иванов-Смоленский А.В. Электрические машины. В 2 т. Т. 2: учеб. для вузов. М.: МЭИ, 2006.
- 8. Вольдек А.И., Попов В.В. Электрические машины. Введение в электромеханику. Машины постоянного тока и трансформаторы: учеб. для вузов. СПб.: Питер, 2007.

Оглавление

1. Общие сведения по электрическим машинам	3
2. Асинхронные машины	4
3. Расчетные данные для определения основных параметров асинхронных двигателей	18
4. Синхронные машины	19
5. Основные расчетные формулы по синхронным машинам	23
6. Машины постоянного тока	24
7. Формулы для определения основных параметров машин постоянного тока	32
8. Выбор электродвигателей	34
9. Монтаж электродвигателей	35
Литература	39

Учебное издание

Безик Валерий Александрович Башлыков Виктор Акимович Кубаткина Ольга Вячеславовна Ковалев Виталий Витальевич

Электрические машины

Вращающиеся электрические машины

Учебное пособие

Редактор Осипова Е.Н.

Подписано к печати 09.04.2018 г. Формат 60х84. 1/16. Бумага офсетная. Усл. п. 2,38. Тираж 25 экз. Изд. № 5716.

Издательство Брянского государственного аграрного университета 243365, Брянская обл., Выгоничский район, с. Кокино, Брянский ГАУ