Министерство сельского хозяйства РФ

Федеральное государственное бюджетное образовательное учреждение высшего образования БРЯНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

Институт Энергетики и природопользования

Безик В.А.

Практикум по электрическому приводу

Учебно-методическое пособие по выполнению практических работ УДК 621.316.71 (076) ББК 31.291 Б 39

Безик, В. А. Практикум по электрическому приводу: учебно-методическое пособие по выполнению практических работ / В. А. Безик. — Брянск: Изд-во Брянский ГАУ, 2019.-89 с.

Учебно-методическое пособие содержит примеры выполнения задач, задачи для самостоятельного решения и контрольные задания по разделам электрического привода. Предназначено для использования на практических занятиях по дисциплине «Электрический привод» и раздела «Электропривод» других дисциплин. Учебно-методическое пособие предназначено для бакалавров направлений: 13.03.02 - Электроэнергетика и электротехника, 15.03.04 — Автоматизация технологических процессов и производств, 35.03.06 - Агроинженерия.

Рецензент:

к.т.н., доцент кафедры Технических систем в агробизнесе, природообустройстве и дорожном строительстве Гринь А.М. (ФГБОУ ВО Брянский ГАУ).

Рекомендовано к изданию решением методической комиссии института энергетики и природопользования Брянского ГАУ, протокол № 4 от 5.12.2018 года.

[©] Безик В.А., 2019

Содержание

Введение	4
1. Приводные свойства электроприводов	5
1.1 Примеры решения задач	5
1.2 Задачи для самостоятельного решения	13
1.3 Контрольные задания	16
2. Реостатный пуск электродвигателей	26
2.1 Примеры решения задач	26
2.2 Задачи для самостоятельного решения	32
2.3 Контрольные задания	34
3. Механика и динамика электропривода	37
3.1 Примеры решения задач	37
3.2 Контрольные задания	51
4. Режимы работы, выбор электродвигателя	57
4.1 Примеры решения задач	57
4.2 Задачи для самостоятельного решения	63
4.3 Контрольные задания	69
5. Проверка возможности пуска и устойчивости работы электродви-	
гателей	72
5.1 Примеры решения задач	72
5.2 Задачи для самостоятельного решения	75
5.3 Контрольные задания	77
Литература	79
Приложение 1 Основные технические данные электродвигателей се-	
рии АИР основного исполнения	80
Приложение 2 Основные технические данные электродвигателей с	
фазным ротором; степень защиты IP45(IP44)	84
Приложение 3 Основные технические данные электродвигателей по-	
стоянного тока серии 4П	86

Введение

Электрический привод (сокращённо — Электропривод) — это электромеханическая система для приведения в движение исполнительных механизмов рабочих машин и управления этим движением в целях осуществления технологического процесса. Современный электропривод — это совокупность множества электромашин, аппаратов и систем управления ими. Он является основным потребителем электрической энергии (до 60%) и главным источником механической энергии в промышленности.

Достоинства электрического привода:

- мощность электродвигателя для привода рабочей машины может быть подобрана достаточно близкой к требуемой;
- электрический двигатель в пожарном отношении менее опасен, чем, например, тепловой двигатель внутреннего сгорания;
- электропривод позволяет быстро, а если нужно, то и часто, пускать и останавливать машину, плавно тормозить ее;
- при изменении нагрузки на валу электродвигатель не требует специальных регуляторов подачи электроэнергии из сети. Увеличение подводимой к двигателю электроэнергии происходит автоматически с ростом нагрузки;
- электропривод позволяет подобрать такой тип электродвигателя, механическая характеристика которого лучше, чем других двигателей, подходит к характеристике рабочей машины;
- электрический двигатель способен преодолевать длительные и значительные перегрузки, создаваемые рабочей машиной;
- электрический двигатель позволяет экономить электроэнергию, а в отдельных случаях, при рекуперативном торможении, отдавать ее в электрическую сеть:
- при электроприводе можно проще и полнее автоматизировать машины и установки;
- электродвигатель имеет более высокий к.п.д. по сравнению с другими типами двигателей.

Современный электропривод, как правило, автоматизирован. Автоматическая система управления электроприводом позволяет наиболее рационально построить технологический процесс, повысить производительность труда, улучшить качество продукции и снизить ее себестоимость. Для рациональной эксплуатации необходимо хорошо знать электротехнику, свойства и схему электродвигателей, аппаратов и приборов, основы электропривода, схемы управления электроприводом и его автоматизации, а также электрооборудование гидромелиоративных машин.

Предлагаемое пособие содержит ряд задач, охватывающих различные вопросы, связанные с выбором и расчетом параметров и характеристик электроприводов.

1. Приводные свойства электроприводов

1.1 Примеры решения задач

Задача 1.

Для ДПТ независимого возбуждения, используя следующие его паспортные (номинальные) данные: $P_{\rm H}=2.5~{\rm kBT};\ U_{\rm H}=110~{\rm B};\ \eta_{\rm H}=72\%;\ n_{\rm H}=1000~{\rm of}$ /мин, определить величины, характеризующие его работу в номинальном режиме, и построить естественную механическую характеристику.

Решение:

Номинальный ток $I_{\rm H}$, A, электродвигателя:

$$I_{\scriptscriptstyle \rm H} = 1000 \frac{\rm P_{\scriptscriptstyle H}}{U_{\scriptscriptstyle \rm H} \cdot \eta_{\scriptscriptstyle \rm H}}$$

$$I_{\rm H} = 1000 \frac{2.5}{110 \cdot 0.72} = 31.6 \,\text{A}$$

Номинальное сопротивление $R_{\rm H}$, Ом, электродвигателя:

$$R_{\rm H} = \frac{U_{\rm H}}{I_{\rm H}}$$

$$R_{\rm H} = \frac{110}{31.6} = 3.48 \, \text{Om}$$

Сопротивление цепи якоря R,, Ом:

$$R_{\scriptscriptstyle \mathrm{H}} = 0.5(1-\eta_{\scriptscriptstyle \mathrm{H}})R_{\scriptscriptstyle \mathrm{H}}$$

$$R_{\rm ff} = 0.5 \cdot (1 - 0.72) \cdot 3.48 = 0.487 \, \text{Om}$$

Потеря напряжения $\Delta U_{\rm g}$, B, в цепи якоря:

$$\Delta U_{\scriptscriptstyle \mathrm{H}} = I_{\scriptscriptstyle \mathrm{H}} \cdot R_{\scriptscriptstyle \mathrm{H}}$$

$$\Delta U_{\rm g} = 31.6 \cdot 0.487 = 15.4 \, {\rm B}$$

Номинальная ЭДС $E_{\rm H}$, В, якоря

$$E_{\scriptscriptstyle \mathrm{H}} = U_{\scriptscriptstyle \mathrm{H}} - \Delta U_{\scriptscriptstyle \mathrm{H}}$$

$$E_{\rm H} = 110 - 15,4 = 94,6 \, \text{B}$$

Номинальная скорость вращения $\omega_{\rm H}$, рад/с, якоря:

$$\omega_{\scriptscriptstyle \rm H} = \frac{\pi \cdot n_{\scriptscriptstyle \rm H}}{30}$$

$$\omega_{\text{H}} = \frac{3,14 \cdot 1000}{30} = 105 \text{ рад/с}$$

Номинальный вращающий момент M_H , $H \cdot M$, на валу электродвигателя:

$$\mathrm{M_{\scriptscriptstyle H}} = 1000 \frac{\mathrm{P_{\scriptscriptstyle H}}}{\omega_{\scriptscriptstyle H}}$$

$$M_{H} = 1000 \frac{2,8}{105} = 23,8 \text{ H} \cdot \text{M}$$

Номинальная мощность $P_{\text{эн}}$., кВт, потребляемую электродвигателем из электрической сети:

$$P_{\rm \tiny 9H} = \frac{P_{\rm \tiny H}}{\eta_{\rm \tiny H}}$$

$$P_{_{\mathrm{3H}}} = \frac{2.5}{0.72} = 3.47 \; \mathrm{\kappa BT}$$

Полные номинальные потери мощности $\Delta P_{\rm H}$, кВт, в электродвигателе:

$$\Delta P_{_{\rm H}} = P_{_{\rm H}} \left(\frac{1 - \eta_{_{\rm H}}}{\eta_{_{\rm H}}} \right)$$

$$\Delta P_{\text{H}} = 2.5 \left(\frac{1 - 0.72}{0.72} \right) = 0.97 \text{ kBT}$$

Скорость идеального холостого хода ω_0 , рад/с, при номинальном напряжении

$$\omega_0 = \frac{U_{\scriptscriptstyle \rm H} \cdot \omega_{\scriptscriptstyle \rm H}}{E_{\scriptscriptstyle \rm H}}$$

$$\omega_0 = \frac{110 \cdot 105}{94,6} = 122 \text{ рад/с}$$

Постоянная машины $C_{\rm H}$ Вб

$$C_{H} = \frac{E_{H}}{\omega_{H}}$$

$$C_{H} = \frac{94.6}{105} = 0.9 \text{ B6}$$

Номинальный электромагнитный момент $M_{\text{эн}}$., $H \cdot M$,

$$M_{HH} = C_H \cdot I_H$$

$$M_{3H} = 0.9 \cdot 31.6 = 28.4 \text{ H} \cdot \text{M}$$

Падение скорости вращения:

$$\delta_{\rm H} = \frac{\omega_0 - \omega_{\rm H}}{\omega_0}$$

$$\delta_{\rm H} = \frac{122 - 105}{122} = 0.14$$

Момент холостого хода M_{xx} ., $H \cdot M$. (момент потерь):

$$M_{xx} = M_{H} - M_{H}$$

$$M_{xx} = 28.4 - 23.8 = 4.6 \text{ H} \cdot \text{M}$$

Скорость вращения ω_{xx} , рад/с, реального холостого хода

$$\omega_{xx} = \frac{U_{\rm H}}{C_{\rm H}} - M_{xx} \frac{R_{\rm g}}{C_{\rm H}^2}$$

$$\omega_{xx} = \frac{110}{0.9} - 4,6 \cdot \frac{0,487}{0.81} = 119,2 \text{ рад/с}$$

Можно сделать вывод о том, что механическая характеристика ДПТ параллельного или независимого возбуждения при $U = const; \Phi = const; R = const$ представляет собой прямую линию.

Для построения естественной механической характеристики ДПТ независимого возбуждения в двигательном режиме достаточно знать две точки с координатами: А (M = 0; $\omega = \omega_0$); В (M = $M_{\rm H}$; $\omega = \omega_{\rm H}$). (рисунок 1)

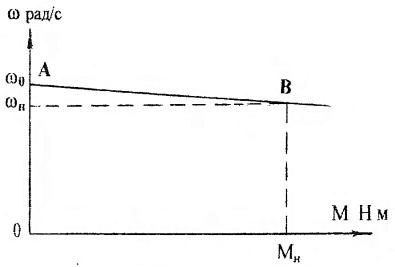


Рисунок 1. Построение механической характеристики ДПТ независимого возбуждения

Задача 2.

Двигатель последовательного возбуждения работает от сети с напряжением 220 В. Номинальный вращающий момент двигателя и номинальная скорость вращения соответственно равны $M_{\rm H}=75$ Н м, $n_{\rm H}=1020$ мин⁻¹. Сопротивления обмоток якоря и возбуждения $r_{\rm g}=0,4$ Ом, $r_{\rm g}=0,3$ Ом. Номинальный к.п.д. $\eta_{\rm H}=81,5\%$. Определить:

- 1) мощность на валу двигателя и мощность, потребляемую из сети при номинальной нагрузке;
 - 2) ток двигателя;
- 3) противо-э.д.с. и электромагнитную мощность (мощность, передаваемую на якорь);
- 4) потери в двигателе при номинальной нагрузке и сопротивление пускового реостата, при котором пусковой ток превышает номинальный в 2 раза.

Решение:

Номинальная мощность двигателя

$$P_{H} = M_{H} * n_{H} / 9,55 = 75*1020 / 9,55 = 8000 B_{T}$$

Потребляемая мощность двигателя

$$P_{1H} = P_H / \eta_H = 8000 / 0.815 = 9800 \text{ kBT}$$

Номинальный ток двигателя

$$I_{H} = P_{1H} / U_{H} = 9800 / 220 = 44,5 \text{ A}$$

Полученный ток является одновременно током обмотки якоря и обмотки возбуждения:

$$I_{H} = I_{gH} = I_{B} = 44,5 \text{ A}$$

Противо э.д.с., наводимая в обмотке якоря:

$$E = U_H - (r_g + r_B) * I_H = 220 - (0.4 + 0.3) * 44.5 = 188.8 B$$

Электромагнитная мощность

$$P_{\text{\tiny 2M}} = E \; I_{\text{\tiny SH}} = 188,4 * 44,5 = 8400 \; B_{\text{\tiny T}} = 8,4 \; \kappa B_{\text{\tiny T}}$$

Магнитные и механические потери

$$\Delta P_{\text{M}} = P_{\text{\tiny 3M}} - P_{\text{\tiny H}} = 8400 - 8000 = 400 \text{ BT}$$

Потери в обмотке якоря и в обмотке возбуждения (электрические потери):

$$\Delta P_{\text{HH}} = r_{\text{H}} I_{\text{HH}}^2 = 0.4 * 44.5^2 = 792 \text{ BT};$$

$$\Delta P_{\rm B} = r_{\rm B} I_{\rm B} = 0.3 * 44.5^2 = 595 \ {\rm Bt}.$$

Суммарные потери в двигателе:

$$\Delta P_{_{\rm H}} = \Delta P_{_{\rm M}} + \Delta P_{_{\rm SH}} + \Delta P_{_{\rm B}}$$
 ;

$$\Delta P_{\rm H} = 400 + 792 + 595 = 1787 \; {\rm BT} = 1.8 \; {\rm \kappa BT}$$

Проверим полученный результат

$$\Delta P_{H} = P_{1H} - P_{H} = 9.8 - 8 = 1.8 \text{ kBT}$$

сопротивление пускового реостата:

$$r_{\text{IID}} = (U_{\text{H}} / 2 * I_{\text{SH}}) - (r_{\text{S}} + r_{\text{B}}) = (220 / 2 * 44.5) - 0.7 = 1.77 \text{ Om}.$$

Задача 3.

Рассчитать и построить естественную механическую характеристику асинхронного электродвигателя с параметрами:

Тип электродви- гателя	Мощность Р _н , кВт	$n_{\scriptscriptstyle \mathrm{H}},$ об/мин	Ток статора <i>I</i> _н , А	%	$cos \varphi_{_{ m H}}$	I_{HOM}	$\frac{M_{nyck}}{M_{HOM}}$	М _{ном}	$0.e$ $R_1^I R_2^I$	я, инерции ротора, кг·м ²	Масса, кг
АИР112М4	5,5	1430	11,3	86,0	0,86	6,0	2,0	2,5	0,054 0,04	1 0,016	49,0

Решение.

Произведем расчет механической характеристики двигателя. Вычислим значения момента и частоты вращения в характерных точках характеристики:

Синхронная точка.

Скорость двигателя равна синхронной

$$n_1 = \frac{60f}{p},$$

где f — частота токов статора, p — число пар полюсов статора.

$$n_1 = (60.50)/2 = 1500 \text{ MuH}^{-1}.$$

Момент двигателя равен 0. *Номинальная точка*. Номинальная частота вращения

$$n_{\scriptscriptstyle H} = n_1(1 - s_{\scriptscriptstyle H})$$

где s_{H} — номинальное скольжение.

$$n_{H} = 1500 \cdot (1-0,05) = 1425 \text{ мин}_{-1}.$$

Номинальный момент рассчитывается по формуле

$$M_{_{\scriptscriptstyle H}}=9,55\frac{P_{_{\scriptscriptstyle H}}}{n_{_{\scriptscriptstyle H}}}\,,$$

где $P_{\rm H}$ — номинальная мощность двигателя, $n_{\rm H}$ — номинальная частота вращения ротора. $M_{\rm H} = 9.55 \cdot (5500/1425) = 36.9 \; \text{H} \cdot \text{M}.$

Критическая точка. критическое скольжение

$$s_{\hat{e}} = s_{i} \left(\mu_{\hat{e}} + \sqrt{\mu_{\hat{e}}^{2} - 1} \right),$$

$$s_{\kappa} = 0.05 \cdot (2.2 + \sqrt{2.2^{2} - 1}) = 0.21.$$

Критическая частота вращения

$$n_{\kappa} = n_1 (1 - s_{\kappa}),$$

 $n_{\kappa} = 1500 \cdot (1-0.21) = 1185 \text{ мин}^{-1}.$

Критический момент

$$M_{\kappa} = \mu_{\kappa} M_{\kappa}$$

где μ_{κ} – кратность критического момента (из паспортных данных двигателя).

$$M_{K} = 2,2.36,9 = 81,2 \text{ H} \cdot \text{M}.$$

Точка минимального момента.

Минимальный момент определяется по формуле

$$M_{\min} = \mu_{\min} M_{\mu}$$

где μ_{\min} - кратность минимального момента (из паспортных данных).

$$M_{min} = 1,6.36,9 = 59 \text{ H} \cdot \text{M}.$$

Частота вращения в минимального точке приблизительно равна 20% от синхронной.

$$n_{min} = 0.2 \cdot 1500 = 300 \text{ мин}^{-1}.$$

Пусковая точка.

Частота вращения в пусковой точке равно 0. Момент рассчитывается по формуле

$$M_n = \mu_n M_{_H}$$

где μ_{n} - кратность пускового момента (из паспортных данных).

$$M_{\text{II}} = 2,0.36,9 = 73,8 \text{ H} \cdot \text{M}.$$

Дополнительно к этим точкам необходимо рассчитать еще три, используя упрощенную формулу Клосса

$$M = \frac{2M_{\kappa}}{\frac{S}{S_{\kappa}} + \frac{S_{\kappa}}{S}}$$

Скольжение в первой точке возьмем приблизительно равным половине от номинального, во второй и третей точках приблизительно равномерно между номинальным и критическим.

$$s_1 = 0.025$$
; $s_2 = 0.1$; $s_3 = 0.15$;

Соответствующие им частоты вращения

$$n_1 = 1500 \cdot (1-0,025) = 1463 \text{ мин}^{-1}.$$

 $n_2 = 1500 \cdot (1-0,1) = 1350 \text{ мин}^{-1}.$
 $n_3 = 1500 \cdot (1-0,15) = 1275 \text{ мин}^{-1}.$

Моменты в точках

$$\begin{split} M_1 &= (2\cdot81,2)/(0,025/0,21+0,21/0,025) = 18,9 \text{ H·м.} \\ M_2 &= (2\cdot81,2)/(0,1/0,21+0,21/0,1) = 62,5 \text{ H·м.} \\ M_3 &= (2\cdot81,2)/(0,15/0,21+0,21/0,15) = 77,3 \text{ H·м.} \end{split}$$

Данные расчетов сведем в таблицу.

Таблица 1 Механическая характеристика двигателя

S	0	0,025	0,05	0,1	0,15	0,21	0,8	1
n, мин ⁻¹	1500	1463	1425	1350	1275	1185	500	0
М, Н·м	0	18,9	36,9	62,5	77,3	81,2	59	73,8

По рассчитанным данным строим механическую характеристику (рисунок 2).

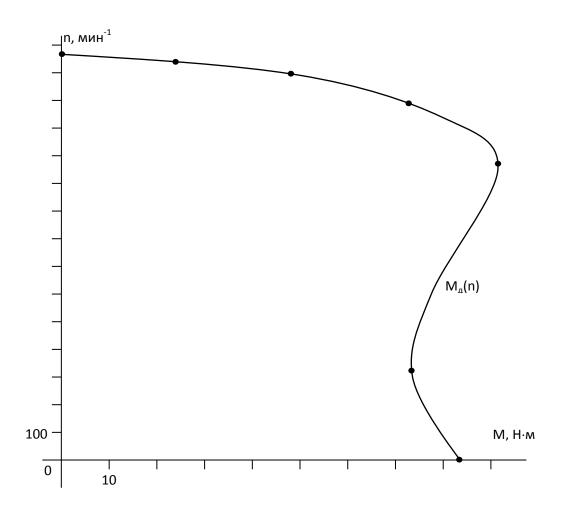


Рисунок 2. Нахождение времени пуска электропривода

1.2 Задачи для самостоятельного решения

Задача 1.

Построить механическую характеристику электродвигателя AИP100L4 по характерным точкам. Построить механическую характеристику электродвигателя в случае обрыва одной фазы.

Задача 2.

Найти мощность P_1 асинхронного электродвигателя, потребляемую из сети 380В 50 Γ ц, мощность P_2 и момент M на валу, а также суммарные потери, если обмотки статора с числом пар полюсов p=3 включены по схеме «звезда», потребляемый ток равен $I_1=3,3A$ при скольжении s=8,5%, $\cos\phi=0,68$ и $\eta=70\%$.

Задача 3.

Построить естественную механическую характеристику двигателя постоянного тока параллельного возбуждения.

Двигатель: 2ПН90LУХЛ4

Его паспортные данные:

Р _н , кВт	U _н , В	n _н , мин ⁻¹	ηн, %	R _я , Ом	R _д , Ом
1,3	220	3150	78	1,3	0,932

Задача 4.

Найти частоту вращения двигателя постоянного тока параллельного возбуждения при номинальном моменте и пониженном на 20% магнитном потоке.

Двигатель: 2ПБ90МУХЛ4

Его паспортные данные:

Р _н , кВт	U _н , В	n _н , мин ⁻¹	η _н , %	R _s , Om	R _д , Ом
0,55	220	3000	71	3,99	2,55

Задача 5.

Найти частоту вращения двигателя постоянного тока параллельного возбуждения при номинальном моменте и введенном в цепь якоря реостате $R_n=2R_s$.

Двигатель: 2ПБ90LУХЛ4 Его паспортные данные:

Рн, кВт	U _H , B	n _н , мин ⁻¹	ηн, %	R _s , Om	R _д , Ом
0,75	220	3150	77	2,28	1,609

Задача 6.

Найти частоту идеального холостого хода двигателя постоянного тока параллельного возбуждения при сниженном на 20% от номинального магнитном потоке.

Двигатель: 2ПН100МУХЛ4

Его паспортные данные:

R_{μ} , Om
0,57
5

Задача 7.

В каких пределах можно изменять скорость вращения двигателя постоянного тока параллельного возбуждения с номинальным моментом на валу при изменении добавочного сопротивления в цепи якоря от 0 до $4R_{\rm s}$.

Двигатель: 2ПБ100МУХЛ4

Его паспортные данные:

_	1 ' '					
	$P_{\scriptscriptstyle H}$, к B т	U _н , В	n _н , мин ⁻¹	ηн, %	R _я , Ом	R _{oв} , Ом
	1,2	220	3150	80	1,325	0,7

Задача 8.

В каких пределах можно изменять скорость вращения двигателя постоянного тока параллельного возбуждения с номинальным моментом на валу при изменении магнитного потока $\pm 20\%$.

Двигатель: 2ПH100LУХЛ4

Его паспортные данные:

Р _н , кВт	U _н , В	n _н , мин ⁻¹	ηн, %	R _s , Om	R _{ob} , Om
2,2	220	3150	81	0,52	0,51

Задача 9.

Какие пределы изменения напряжения якорной цепи должен обеспечивать автотрансформатор для изменения скорости вращения двигателя постоянного тока параллельного возбуждения --20%...+5%.

2ПН112МУХЛ4

Его паспортные данные:

Р _н , кВт	U _н , В	n _н , мин ⁻¹	ηн, %	R _s , Om	R _{ob} , Om
3,6	220	3000	79	0,42	0,356

Задача 10.

При какой частоте вращения обеспечивается тормозной момент равный номинальному при динамическом торможении двигателя постоянного тока параллельного возбуждения без добавочного сопротивления в цепи якоря.

Двигатель: 2ПН112МУХЛ4

Его паспортные данные:

ĺ	Р _н , кВт	U _H , B	n _н , мин ⁻¹	ηн, %	R _s , Om	R _{ob} , Om
	3,6	220	3000	79	0,42	0,5

Задача 11.

Найти частоты вращения и моменты в синхронной, номинальной, критической и пусковой точках асинхронного двигателя. По найденным точкам построить естественную механическую характеристику.

Двигатель: AИР132M4 Его паспортные данные:

Р _н , кВт	U _H , B	n _н , мин ⁻¹	η, %	Cosφ	$\mu_{\scriptscriptstyle K}$	$\mu_{\scriptscriptstyle \Pi}$	K _I
11	220	1478	87,5	0,87	2,2	2	7,5

Задача 12.

Найти скорость вращения асинхронного двигателя с фазным ротором при номинальном моменте на валу и добавочном сопротивлении в цепи ротора $R_{\rm д}\!\!=\!\!3R_{\rm s}$.

Двигатель: 4AK160S4У3 Его паспортные данные:

Рн, кВт	U _н , В	S _H , %	ηн, %	Cosφ	n ₁ , мин ⁻¹	$\mu_{\scriptscriptstyle K}$	K_{I}	I_{2H}	$E_{2\kappa}$
7,5	220	5	82,5	0,77	1000	3,5		18	300

Залача 13.

При каком снижении напряжения питания пусковой момент асинхронного двигателя упадет до номинального.

Двигатель: 4A90L2У3

Его паспортные данные:

Р _н , кВт	U _н , В	n _н , мин ⁻¹	ηн, %	Cosφ	$\mu_{\scriptscriptstyle K}$	μ_{Π}	K_{I}
2	220	2838	79	0,87	2,2	2	7,5

Задача 14.

В каких пределах необходимо изменять частоту питающего напряжения чтобы частота вращения асинхронного двигателя изменялась в пределах — 20%...+5% от номинальной?

Двигатель: 4A100S4У3

Его паспортные данные:

Р _н , кВт	U _H , B	n _н , мин ⁻¹	ηн, %	Cosφ	$\mu_{\scriptscriptstyle K}$	μ_{Π}	K_{I}
3	220	1420	82	0,83	2,2	2	6,5

Задача 15.

Какова станет перегрузочная способность асинхронного двигателя при снижении напряжения питания на 20%?

Двигатель: 4A100S4У3 Его паспортные данные:

Рн, кВт	U _н , В	n _н , мин ⁻¹	ηн, %	Cosφ	$\mu_{\scriptscriptstyle K}$	μ_{Π}	K _I
3	220	1420	82	0,83	2,2	2	6,5

1.3 Контрольные задания

Задача 1.

Для двигателя постоянного тока независимого возбуждения рассчитать и построить:

- а) естественную механическую характеристику в двигательном режиме;
- б) искусственные характеристики в соответствии с вариантом;
- в) в зависимости от задания варианта в тормозном режиме определить момент или ток якоря при указанной частоте вращения, частоту вращения при указанном моменте или токе якоря.

Исходные данные для расчета приведены в таблице 1, где даны

- 1. номинальная мощность двигателя P_{H} , кBт,
- 2. номинальный ток якоря $I_{\text{ян}}$, A,
- 3. номинальная частота вращения, $n_{H_{1}}$ мин⁻¹,
- 4. номинальный коэффициент полезного действия, $\eta_{\scriptscriptstyle H}$, %.

Рассчитать момент или ток (согласно задания) в тормозном режиме согласно задания при указанной частоте вращения.

Рассчитать скорость вращения в тормозном режиме согласно задания при указанном моменте (токе).

Таблица 2

_		1			Тиолици 2
№	D.	_	$n_{\scriptscriptstyle \mathrm{H.}}$		
вари-	Р _н ,	$I_{_{\mathrm{HH},}}$	οб/	η _н ,	Искусственные характеристики
ри-	кВт	Α	мин	%	J 1 1
анта 1	2	3	4	5	<i>C</i>
5.	2,5	14,6	945	5 79	$c R_{\pi} = 0.4 R_{HOM}$
3.	2,3	14,0	943	19	$_{\rm L}$ в режиме противовключения, если если $_{\rm T}$ =1,1 $_{\rm H}$, $_{\rm L}$ =1,25 $_{\rm H}$
6.	8,0	44	975	83	при $U=0.7U_{\rm H}$
0.	0,0	44	913	0.5	в режиме динамического торможения, если $w_r=1,1w_H$ $I_r=0,9I_H$
7.	12,0	64	1450	84	$c R_n = 0.55 R_{HOM}$
, .	12,0		1150		в режиме противовключения, если $w_{\rm T}$ =1,2 $w_{\rm H}$, $M_{\rm T}$ =1,1 $M_{\rm H}$
8.	18,0	94	1470	86	при Ф=0,7Ф _н
	10,0	, .	1.,0		в режиме динамического торможения, если $w_{\rm r}$ =1,1 $w_{\rm H}$ $I_{\rm r}$ =0,9 $I_{\rm H}$
9.	4,0	12	960	77	при U=0,7U _н
	,				в режиме рекуперативного торможения. если $w_{\rm r} = 1,1 w_{\rm o}$,
					$I_{\rm T} = 0.95I_{\rm gh}$
10.	15	40	1430	85	$c R_o = 0.4 R_{HOM}$
					в режиме противовключения, если $w_{\scriptscriptstyle T}\!\!=\!1,\!2w_{\scriptscriptstyle H}$, $M_{\scriptscriptstyle T}\!\!=\!1,\!1M_{\scriptscriptstyle H}$
11.	17	45	1470	86	при Ф=0,7Ф _н
					в режиме рекуперативного торможения, если $w_{\scriptscriptstyle T}\!\!=\!1,\!1w_{\scriptscriptstyle O},$
					$I_{\rm T} = 0.95I_{\rm HH}$
12.	32	82	2940	88	при U=0,7U _н
10	4.5	0.5	1.1.10	0.7	в режиме динамического торможения, если $w_{\scriptscriptstyle T} = 1.1 w_{\scriptscriptstyle H} I_{\scriptscriptstyle T} = 0.9 I_{\scriptscriptstyle H}$
13.	16	86	1440	85	$c R_{\mu} = 0.4 R_{HOM}$
1.4	7.0	10.7	1.400	02	в режиме динамического торможения, если $w_{\rm r}$ =1,1 $w_{\rm H}$ $I_{\rm r}$ =0,9 $I_{\rm H}$
14.	7,0	19,5	1420	83	при U=0,6U _н
					в режиме рекуперативного торможения, если $w_{\rm T} = 1,1 w_{\rm o},$ $I_{\rm T} = 0,95 I_{\rm SH}$
15.	4,5	26	725	77	Γ_{T} —0,70 Γ_{RH} при Φ =0,7 Φ_{H}
13.	7,5	20	123	''	в режиме динамического торможения $w_T=1,1w_H$ $I_T=0,9I_H$
					b pentine dimensi teckere representa n.t. 1,1 n.t. 1,7 o.,5 1
16.	6,0	33	740	82	при Rд = 0,3R _{ном}
					в режиме противовключения $w_{\rm r}\!\!=\!\!1,\!2w_{\rm h}$, $M_{\rm r}\!\!=\!\!1,\!1M_{\rm h}$
17.	12,0	65	740	84	при $R_o = 0.4 R_{HOM}$
					в режиме динамического торможения $w_{\scriptscriptstyle T}\!\!=\!1,\!2w_{\scriptscriptstyle H}I_{\scriptscriptstyle T}\!\!=\!0,\!9I_{\scriptscriptstyle H}$
18.	55	31	2950	80	при U=0,7U _н
					в режиме рекуперативного торможения $w_r=1,1w_o, I_r=0,95I_{\text{ян}}$
19.	8,0	43,5	1450	83	при Ф=0,7Ф _н
20	2.4	101	20.70	0.7	в режиме противовключения $w_{\rm r}\!\!=\!\!1,\!2w_{\rm H}$, $M_{\rm r}\!\!=\!\!1,\!1M_{\rm H}$
20.	24	124	2950	87	при $R_0 = 0.4 R_{HOM}$
21		10.0	720	0.2	в режиме рекуперативного торможения $w_{\rm r}$ =1,1 $w_{\rm o}$, $I_{\rm r}$ =0,95 $I_{\rm sh}$
21.	6,7	19,0	730	83	при U=0,7U _н
22.	37	06	2020	88	в режиме динамического торможения $w_T = 1.2 w_H I_T = 0.9 I_H$
۷۷.	31	96	2920	00	$c~R_{o} = 0.4~R_{{\scriptscriptstyle HOM}}$ в режиме противовключения $w_{{\scriptscriptstyle T}} = 1.2 w_{{\scriptscriptstyle H}}$, $M_{{\scriptscriptstyle T}} = 1.1 M_{{\scriptscriptstyle H}}$
23.	17,0	45	1450	86	при Φ =0,7 Φ _H
23.	17,0	7.5	1750		при Φ – 0,7 Φ _н в режиме рекуперативного торможения w_{τ} = 1,1 w_{o} , I_{τ} = 0,95 $I_{\text{ян}}$
24.	17,0	45	1460	86	при U=0,7U _н
	17,0		1100		в режиме противовключения $w_{\rm r}\!\!=\!1,\!2w_{\rm h}$, $M_{\rm r}\!\!=\!1,\!1M_{\rm h}$
25.	5,2	22,6	730	84	при U=0,7U _н
	,	, -			в режиме рекуперативного торможения $w_r=1,1w_o, I_r=0,95I_{\text{ян}}$

вари- ри- анта P _н , кВт I _{ян} , A об/ мин η _н , % Искусственные характеристики 1 2 3 4 5 6 26. 60 160 2980 865 с R _{эоб} =0,5R _{ян} в режиме противовключения w _т =1,2w _н , M _т =1,1M _н 27. 10 50 1450 86 при Ф=0,8Ф _н в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 28. 2,5 11 950 85 при U=0,7U _н в режиме противовключения w _т =1,2w _н , M _τ =1,2M _н 29. 24 80 2940 88,5 с R _{эоб} =0,7R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{вн} 31. 12 78 1460 88 при U=0,5U _н в режиме противовключения w _т =1,2w _н , M _τ =0,9M _н 32. 26 63,8 2960 85,5 при R _{эоб} =0,5R _{ян} в режиме противовключения w _т =1,2w _н , I _τ =0,9I _н 33. 16 134 1470 88 при D=0,8U _н в режиме противовключения w _т =1,2w _н I _τ =0,9I _н 34. 17,0 55 2970 90 при Ф=0,7U _н в режиме противовключения w _т =1,2w _н I _τ =0,9I _н				n			№
ри- анта кВт анта A анта мин % 6 26. 60 160 2980 865 с R _{лоб} =0,5R _{яп} в режиме противовключения w _т =1,2w _н , M _т =1,1M _н 27. 10 50 1450 86 при Ф=0,8Ф _н в режиме противовключения w _т =1,2w _н , M _т =1,2M _н 28. 2,5 11 950 85 при U=0,7U _н в режиме противовключения w _т =1,2w _н , M _т =1,2M _н 29. 24 80 2940 88,5 с R _{лоб} =0,7R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 30. 15 78 1460 88 при U=0,5U _н в режиме динамического торможения w _т =1,1w _o , I _т =0,95I _{ян} 31. 12 78 1470 87,5 при Ф=0,8Ф _н в режиме противовключения w _т =1,2w _н , M ₇ =0,9M _н 32. 26 63,8 2960 85,5 при R _{лоб} =0,5S _{ян} в режиме противовключения w _т =1,2w _н , M ₇ =0,9I _н 33. 16 134 1470 88 при U=0,8U _н в режиме противовключения w _т =1,2w _н I _τ =0,9I _н 34. 17,0 55 2970 90 при Ф=0,7Ф _н в режиме противовключения w _т =1,2w _н I _τ =0,9I		Искусствении в узрактеристики		n _{H,}	$I_{\text{ян,}}$	Р _н ,	вари-
анта 1 2 3 4 5 6 26. 60 160 2980 865 с R₂₀₀б=0,5R₃н в режиме противовключения w;=1,2w₃, M;=1,1M₃ 27. 10 50 1450 86 при Ф=0,8Ф₁ 28. 2,5 11 950 85 при U=0,7U₁ 8 режиме противовключения w;=1,2w₃, M;=1,2M₃ 29. 24 80 2940 88,5 с R₂₀₀f=0,7R₃₁ 30. 15 78 1460 88 при U=0,5U₁ 8 в режиме динамического торможения w;=1,1w₀, I₁=0,95I₃н 31. 12 78 1470 87,5 при Ф=0,8Ф₁ 32. 26 63,8 2960 85,5 при R₂₀₀f=0,5R₃н 33. 16 134 1470 88 при U=0,8U₁ 34. 17,0 55 2970 90 при Ф=0,7Ф₁ 35. 16 80 2980 89 при Ф=0,7Ф₁ 36. 36 95 2		искусственные характеристики	%		Α	кВт	ри-
26. 60 160 2980 865 с R ₂₀₆ =0,5R ₈₁ в режиме противовключения w _т =1,2w ₁₁ , M _τ =1,1M ₁₁ 27. 10 50 1450 86 при Ф=0,8Ф ₁₁ в режиме рекуперативного торможения w _т =1,1w ₀ , I _т =0,95I ₈₁ 28. 2,5 11 950 85 при U=0,7U ₁₁ в режиме противовключения w _т =1,2w ₁₁ , M _τ =1,2M ₁₁ 29. 24 80 2940 88,5 с R ₂₀₆ =0,7R ₈₁₁ в режиме рекуперативного торможения w _т =1,1w ₀ , I _т =0,95I ₈₁ 30. 15 78 1460 88 при U=0,5U ₁₁ в режиме динамического торможения w _т =1,1w ₀ , I _τ =0,95I ₈₁ 31. 12 78 1470 87,5 при Ф=0,8Ф ₁₁ в режиме противовключения w _т =1,2w ₁₁ , M _τ =0,9M ₁₁ 32. 26 63,8 2960 85,5 при R ₂₀₆ =0,5R ₈₁ в режиме рекуперативного торможения w _т =1,1w ₀ , I _τ =0,95I ₈₁ 33. 16 134 1470 88 при U=0,8U ₁₁ в режиме противовключения w _т =1,2w ₁₁ I _τ =0,9I ₁₁ 34. 17,0 55 2970 90 при Ф=0,7Ф ₁ в режиме рекуперативного торможения w _т =1,2s w ₀ , I _τ =0,95I ₈₁ 35. 16 80 2980 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
В режиме противовключения w _r =1,2w _H , M _r =1,1M _H							
27. 10 50 1450 86 при Ф=0,8Ф₁ в режиме рекуперативного торможения w₁=1,1w₀, I₁=0,95I₃н в режиме противовключения w₁=1,2wң , M₁=1,2Mң 28. 2,5 11 950 85 при U=0,7U₁ в режиме противовключения w₁=1,2wң , M₁=1,2Mң 29. 24 80 2940 88,5 с R₃о6=0,7R₃н в режиме рекуперативного торможения w₁=1,1w₀, I₁=0,95I₃н в режиме динамического торможения w₁=1,1w₀, I₁=0,95I₃н в режиме противовключения w₁=1,2wң , M₁=0,9Mң 31. 12 78 1470 87,5 при Ф=0,8Ф₁ в режиме противовключения w₁=1,2wң , M₁=0,9Mң 32. 26 63,8 2960 85,5 при R₃₀6=0,5R₃н в режиме рекуперативного торможения w₁=1,1w₀, I₁=0,95I₃н в режиме противовключения w₁=1,2wң I₁=0,9I₃н в режиме рекуперативного торможения w₁=1,2wң I₁=0,9I₃н в режиме рекуперативного торможения w₁=1,25 w₀, I₁=0,95I₃н в режиме противовключения w₁=1,2wң I₁=0,9I₃н в режиме противовключения w₁=1,1w₀, I₁=0,95I₃н в режиме рекуперативного торможения w₁=1,1w₀, I₁=0,95I₃н в режиме проти		A**	865	2980	160	60	26.
В режиме рекуперативного торможения w _r =1,1w _o , I _r =0,95I _{ян}			0.6	1.450	50	10	27
28. 2,5 11 950 85 при U=0,7U _H в режиме противовключения w _T =1,2w _H , M _T =1,2M _H 29. 24 80 2940 88,5 с R _{лоб} =0,7R _{ян} в режиме рекуперативного торможения w _T =1,1w _o , I _T =0,95I _{ян} 30. 15 78 1460 88 при U=0,5U _H в режиме динамического торможения w _T =1,1w _o , I _T =0,95I _{ян} 31. 12 78 1470 87,5 при Ф=0,8Ф _H в режиме противовключения w _T =1,2w _H , M _T =0,9M _H 32. 26 63,8 2960 85,5 при R _{доб} =0,5R _{ян} в режиме рекуперативного торможения w _T =1,1w _o , I _T =0,95I _{ян} 33. 16 134 1470 88 при U=0,8U _H в режиме противовключения w _T =1,2w _H I _T =0,9I _H 34. 17,0 55 2970 90 при Ф=0,7Ф _H в режиме рекуперативного торможения w _T =1,2s w _o , I _T =0,95I _R 35. 16 80 2980 89 при U=0,7U _H в режиме противовключения w _T =1,2w _H I _T =0,9I _H 36. 36 95 2960 85 при R _{доб} =0,6R _{Ян} в режиме рекуперативного тормож	r	1	86	1450	50	10	27.
29. 24 80 2940 88,5 с R _{доб} =0,7R _{ян} 30. 15 78 1460 88 при U=0,5U _н в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 31. 12 78 1470 87,5 при Ф=0,8Ф _н в режиме динамического торможения w _т =1,1w _o , I _т =0,95I _{ян} 32. 26 63,8 2960 85,5 при R _{доб} =0,5R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 33. 16 134 1470 88 при U=0,8U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 34. 17,0 55 2970 90 при Ф=0,7Ф _н в режиме рекуперативного торможения w _т =1,2s w _o , I _т =0,95I _в 35. 16 80 2980 89 при U=0,7U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{вн} 37. 5,0 21 730 84 при Ф=0,8Ф _н	HR		85	950	11	2.5	28
29. 24 80 2940 88,5 с R _{доб} =0,7R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 30. 15 78 1460 88 при U=0,5U _н в режиме динамического торможения w _т =1,1w _o , I _т =0,95I _{ян} 31. 12 78 1470 87,5 при Ф=0,8Ф _н в режиме противовключения w _т =1,2w _н , M _т =0,9M _н 32. 26 63,8 2960 85,5 при R _{доб} =0,5R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 33. 16 134 1470 88 при U=0,8U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 34. 17,0 55 2970 90 при Ф=0,7Ф _н в режиме рекуперативного торможения w _т =1,25 w _o , I _т =0,95I в режиме противовключения w _т =1,2w _н I _т =0,9I _н 35. 16 80 2980 89 при U=0,7U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н		*	65	930	11	2,3	26.
30. 15 78 1460 88 при U=0,5U _н в режиме динамического торможения w _т =1,1w _o , I _т =0,95I _{ян} 31. 12 78 1470 87,5 при Ф=0,8Ф _н в режиме противовключения w _т =1,2w _н , M _т =0,9M _н 32. 26 63,8 2960 85,5 при R _{доб} =0,5R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 33. 16 134 1470 88 при U=0,8U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 34. 17,0 55 2970 90 при Ф=0,7Ф _н в режиме рекуперативного торможения w _т =1,25 w _o , I _т =0,95I 35. 16 80 2980 89 при U=0,7U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н		· •	88.5	2940	80	24	29.
30. 15 78 1460 88 при U=0,5U _н в режиме динамического торможения w _r =1,1w _o , I _r =0,95I _{ян} 31. 12 78 1470 87,5 при Ф=0,8Ф _н в режиме противовключения w _r =1,2w _н , M _r =0,9M _н 32. 26 63,8 2960 85,5 при R _{доб} =0,5R _{ян} в режиме рекуперативного торможения w _r =1,1w _o , I _r =0,95I _{ян} 33. 16 134 1470 88 при U=0,8U _н в режиме противовключения w _r =1,2w _н I _r =0,9I _н 34. 17,0 55 2970 90 при Ф=0,7Ф _н в режиме рекуперативного торможения w _r =1,25 w _o , I _r =0,95I 35. 16 80 2980 89 при U=0,7U _н в режиме противовключения w _r =1,2w _н I _r =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _r =1,1w _o , I _r =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н	$I_{\text{\tiny HH}}$,-				
31. 12 78 1470 87,5 при Φ=0,8Φ _н в режиме противовключения w _т =1,2w _н , M _т =0,9M _н 32. 26 63,8 2960 85,5 при R _{доб} =0,5R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 33. 16 134 1470 88 при U=0,8U _н в режиме противовключения w _т =1,2w _н I _τ =0,9I _н 34. 17,0 55 2970 90 при Ф=0,7Ф _н в режиме рекуперативного торможения w _т =1,25 w _o , I _т =0,95I 35. 16 80 2980 89 при U=0,7U _н в режиме противовключения w _т =1,2w _н I _τ =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н	****		88	1460	78	15	30.
32. 26 63,8 2960 85,5 при R _{доб} =0,5R _{ян} в режиме противовключения w _т =1,2w _н , M _т =0,9M _н 33. 16 134 1470 88 при U=0,8U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 34. 17,0 55 2970 90 при Φ=0,7Φ _н в режиме рекуперативного торможения w _т =1,25 w _o , I _т =0,95I 35. 16 80 2980 89 при U=0,7U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н	н	*					
32. 26 63,8 2960 85,5 при R _{доб} =0,5R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 33. 16 134 1470 88 при U=0,8U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 34. 17,0 55 2970 90 при Ф=0,7Ф _н в режиме рекуперативного торможения w _т =1,25 w _o , I _т =0,95I 35. 16 80 2980 89 при U=0,7U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н			87,5	1470	78	12	31.
33. 16 134 1470 88 при U=0,8U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 34. 17,0 55 2970 90 при Ф=0,7Ф _н в режиме рекуперативного торможения w _т =1,25 w _o , I _т =0,95I 35. 16 80 2980 89 при U=0,7U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н		в режиме противовключения $w_{\scriptscriptstyle T}\!\!=\!1,\!2w_{\scriptscriptstyle H}$, $M_{\scriptscriptstyle T}\!\!=\!0,\!9M_{\scriptscriptstyle H}$					
33. 16 134 1470 88 при U=0,8U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 34. 17,0 55 2970 90 при Φ=0,7Φ _н в режиме рекуперативного торможения w _т =1,25 w _o , I _т =0,95I 35. 16 80 2980 89 при U=0,7U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н		A Marie Committee of the Committee of th	85,5	2960	63,8	26	32.
34. 17,0 55 2970 90 при Ф=0,7Ф _н 35. 16 80 2980 89 при U=0,7U _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н	$I_{_{\mathrm{HH}}}$						
 34. 17,0 55 2970 90 при Ф=0,7Ф_н в режиме рекуперативного торможения w_т=1,25 w_o, I_т=0,95I 35. 16 80 2980 89 при U=0,7U_н в режиме противовключения w_т=1,2w_н I_т=0,9I_н 36. 36 95 2960 85 при R_{доб}=0,6R_{ян} в режиме рекуперативного торможения w_т=1,1w_o, I_т=0,95I_{ян} 37. 5,0 21 730 84 при Ф=0,8Ф_н 		1 1 2	88	1470	134	16	33.
35. 16 80 2980 89 при U=0,7U _н в режиме рекуперативного торможения w _т =1,25 w _o , I _т =0,95I 35. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н							
35. 16 80 2980 89 при U=0,7U _н в режиме противовключения w _т =1,2w _н I _т =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н		1 , 11	90	2970	55	17,0	34.
в режиме противовключения w _т =1,2w _н I _т =0,9I _н 36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Φ=0,8Φ _н	51 _{ян}		00	2000	00	1.6	25
36. 36 95 2960 85 при R _{доб} =0,6R _{ян} в режиме рекуперативного торможения w _т =1,1w _o , I _т =0,95I _{ян} 37. 5,0 21 730 84 при Ф=0,8Ф _н		*	89	2980	80	16	35.
в режиме рекуперативного торможения $w_{\rm r}{=}1,1w_{\rm o},~I_{\rm r}{=}0,95I_{\rm sh}$ 37. 5,0 21 730 84 при $\Phi{=}0,8\Phi_{\rm h}$			0.5	2060	05	26	26
37. 5,0 21 730 84 при Ф=0,8Ф _н	r		85	2900	95	30	30.
	НК		8/1	730	21	5.0	37
b pertine difficult terror to how with the color		* '	04	730	21	3,0	37.
38. 2,5 14,6 1140 79 при U=0,7U _н		·	79	1140	14.6	2.5	38.
в режиме противовключения w_{r} =1,2 w_{H} I_{r} =0,9 I_{H}			, ,	11.0	1.,0	_,c	00.
39. 8 44 820 83 c R _{noo} =0,5R _{sH}			83	820	44	8	39.
в режиме рекуперативного торможения $w_{T}=1,1w_{o},\ I_{T}=0,95I_{gr}$	$I_{_{\mathrm{HH}}}$	D** :					
40. 12 64 1310 83,5 при Ф=0,8Ф _н			83,5	1310	64	12	40.
в режиме противовключения $w_{\rm r}\!\!=\!\!1,\!2w_{\rm H}I_{\rm r}\!\!=\!\!0,\!9I_{\rm H}$		в режиме противовключения $w_{\rm r} = 1.2 w_{\rm h} \; I_{\rm r} = 0.9 I_{\rm h}$					
41. 18 94 1140 85 при R _{доб} =0,5R _{ян}		при R _{доб} =0,5R _{ян}	85	1140	94	18	41.
в режиме динамического торможения $w_{\rm r} = 1,2 w_{\rm h} I_{\rm r} = 0,9 I_{\rm h}$							
42. 4 12 1100 76,5 при Ф=0,8Ф _н		* '	76,5	1100	12	4	42.
в режиме противовключения $w_{\rm r}\!\!=\!\!1,\!2w_{\rm H}$ $I_{\rm r}\!\!=\!\!0,\!9I_{\rm H}$							
43. 15 40 700 84 при Ф=0,8Ф _н	r	1	84	700	40	15	43.
в режиме рекуперативного торможения $w_r = 1.1 w_o$, $I_r = 0.95 I_{gH}$	нк		0.7	1077	4.5	17	4.4
44. 17 45 1075 85 при U=0,7U _н		*	85	10/5	45	1/	44.
в режиме противовключения w _т =1,05w _н M _т =1,25M _н 45. 32 82 1130 86 при R _{доб} =0,5R _{ян}			96	1120	92	22	15
45. 32 82 1130 86 при $R_{доб}$ =0,5 R_{gH} в режиме динамического торможения w_{r} =1,2 w_{H} I_{r} =0,9 I_{H}		* 0**	00	1130	02	32	43.
46. 16 86 635 84 при Ф=0,8Ф _н			84	635	86	16	46
в режиме рекуперативного торможения w_r =1,1 w_o , I_r =0,95 I_{sh}		1 1 1	0-7	033		10	70.
47. 32 82 1150 86,5 при U=0,6U _н	нк		86.5	1150	82	32	47.
$^{17.}$ $^{17.}$		*	20,0	-100			
48. 16 86 675 85 при R _{поб} =0,2R _{ян}		<u> </u>	85	675	86	16	48.
в режиме рекуперативного торможения w_r =1,1 w_o , I_r =0,95 I_{sh}	•ян	A Marie Committee of the Committee of th		•			
49. 7,0 19,5 1520 83 при Ф=0,8Ф _н			83	1520	19,5	7,0	49.
в режиме противовключения $w_{\scriptscriptstyle T}\!\!=\!1,\!05w_{\scriptscriptstyle H}M_{\scriptscriptstyle T}\!\!=\!1,\!25M_{\scriptscriptstyle H}$		105 M 125M	I				1

№ вари-	Р _н ,	$I_{_{\mathrm{HH},}}$	n _{н,} об/	η _н ,	Искусственные характеристики
ри- анта	кВт	Α	МИН	%	y y v v v v v v v
1	2	3	4	5	6
50.	7,0	19,5	1420	84	при U=0,8U _н
					в режиме динамического торможения $w_{\scriptscriptstyle T}\!\!=\!1,\!2w_{\scriptscriptstyle H}I_{\scriptscriptstyle T}\!\!=\!0,\!9I_{\scriptscriptstyle H}$
51.	7	19,5	1530	84,5	при $R_{доб}$ =0,4 $R_{ян}$
					в режиме рекуперативного торможения $w_{\rm r}$ =1,1 $w_{\rm o}$, $I_{\rm r}$ =0,95 $I_{\rm gh}$
52.	4,5	26	1000	76	при Ф=0,8Ф _н
53.	6,0	33	1075	77,5	в режиме противовключения $w_{\rm T} = 1,05 w_{\rm H} M_{\rm T} = 1,25 M_{\rm H}$
33.	0,0	33	1073	17,5	при $R_{доб}$ =0,2 R_{gh} в режиме рекуперативного торможения w_{r} =1,1 w_{o} , I_{r} =0,95 I_{gh}
54.	12,0	65	758	84,5	при U=0,8U _н
	,			,	в режиме противовключения $w_{\rm r} = 1,05 w_{\rm H} M_{\rm r} = 1,25 M_{\rm H}$
55.	5,5	31	1475	81	при Ф=0,7Ф _н
					в режиме рекуперативного торможения $w_r=1,1w_o, I_r=0,95I_{\text{ян}}$
56.	8,0	43,5	1400	90	при Ф=0,8Ф _н
					в режиме противовключением $w_{\scriptscriptstyle T}\!\!=\!1,\!05w_{\scriptscriptstyle H}M_{\scriptscriptstyle T}\!\!=\!1,\!25M_{\scriptscriptstyle H}$
57.	24	124	1075	875	при U=0,8U _н
					в режиме рекуперативного торможения $w_{\rm r} = 1.1 w_{\rm o}, I_{\rm r} = 0.95 I_{\rm sh}$
58.	6,7	19	975	84	при U=0,7U _н
50	37	06	075	97	в режиме противовключения w _т =1,05w _н M _т =1,25M _н
59.	37	96	875	87	при U=0,8U _н R _{доб} =0,2R _{ян}
60.	17	45	1475	86,5	в режиме рекуперативного торможения $w_{\rm T}$ =1,1 $w_{\rm o}$, $I_{\rm T}$ =0,95 $I_{\rm gh}$ при $R_{\rm доб}$ =0,2 $R_{\rm gh}$
00.	1 /	43	1473	80,5	при $K_{доб}$ —0,2 K_{gH} в режиме динамического торможения W_{r} =1,2 W_{H} I_{r} =0,9 I_{H}
61.	5,2	22,6	2735	84,5	при U=0,6U _н
	- ,-	,	_,_,	,.	в режиме противовключения $w_r=1,1w_H,M_r=1,25M_H$
62.	60	160	975	87,5	при Ф=0,8Ф _н
					в режиме рекуперативного торможения $w_r = 1,2 w_o I_r = 0,95 I_{gH}$
63.	10	50	2150	85	$c R_{\text{доб}} = 0.2 R_{\text{ян}}$
					в режиме противовключения $w_{\scriptscriptstyle T}\!\!=\!1,\!15w_{\scriptscriptstyle H},I_{\scriptscriptstyle T}\!\!=\!1,\!2I_{\scriptscriptstyle H}$
64.	2,5	11	975	86	при Ф=0,7 Ф _н
	10	0.4	2075	00	в режиме рекуперативного торможения $w_{\rm r}$ =1,4 $w_{\rm H}$, $I_{\rm r}$ =0,95 $I_{\rm gh}$
65.	18	94	3075	88	$c R_{\text{A}} = 0.2 R_{\text{SH}}$
66.	24	80	3350	96	в режиме противовключения $w_{\rm r} = 1.1 w_{\rm H}, I_{\rm r} = 1.2 I_{\rm H}$
00.	24	80	3330	86	при $U=0,6U_{\rm H}$ в режиме динамического торможения $w_{\rm T}=1,1w_{\rm H},I_{\rm T}=0,9I_{\rm H}$
67.	15	78	3150	87	с R _л =0,3R _{ян}
07.	13	/ 0	3130	07	в режиме рекуперативного торможения $w_{t}=1,3w_{t}$, $I_{t}=1,1I_{gh}$
68.	12	78	1475	87	при Ф=0,8Ф _н
					в режиме противовключения $w_{\rm r} = 1.1 w_{\rm H}, \; I_{\rm r} = 1.2 I_{\rm H}$
69.	26	63,8	2140	85	при U=0,65U _н
					в режиме рекуперативного торможения $w_{\rm T}$ =1,25 $w_{\rm o}$, $M_{\rm T}$ =1,1 $M_{\rm H}$
70.	16	134	2175	89	при $R_{\rm A}\!\!=\!\!0,\!25R_{\rm яH}$
7.1	2.4	104	1100	00	в режиме противовключения $w_r = 1, 1w_H$, $I_r = 1, 2I_H$
71.	24	124	1100	89	при Ф=0,9Ф _н
72	10	0.4	1100	05	в режиме динамического торможения $w_T = 0.9 w_H$, $I_T = 0.95 I_{SH}$
72.	18	94	1190	85	при $U=0,65U_{\rm H}$ в режиме рекуперативного торможения $w_{\rm T}=1,2w_{\rm o},M_{\rm T}=1,1M_{\rm H}$
73.	12	64	1310	85	в режиме рекуперативного торможения w_{τ} -1,2 w_{0} , w_{τ} -1,1 w_{H} с R_{π} =0,25 R_{gH}
, 3.	12	0-7	1310		в режиме противовключением $w_{T}=1,1w_{H},\ I_{T}=1,2I_{H}$
		1	<u> </u>	1	т тутин, т тутин

№ вари- ри- анта	Р _н , кВт	I _{ян,} А	n _{н,} об/ мин	η _н , %	Искусственные характеристики
1	2	3	4	5	6
74.	8	43,5	1450	82	при U=0,7 $\rm U_{\rm H}$ в режиме рекуперативного торможения $\rm w_{\scriptscriptstyle T}\!\!=\!1,\!2\rm w_{\scriptscriptstyle O}\!,\!M_{\scriptscriptstyle T}\!\!=\!1,\!1\rm M_{\scriptscriptstyle H}$
75.	5,5	31	1400	81	при $U=0,65U_{\scriptscriptstyle H}$ в режиме противовключения $w_{\scriptscriptstyle T}=1,1w_{\scriptscriptstyle H},I_{\scriptscriptstyle T}=1,2I_{\scriptscriptstyle H}$
76.	16	86	670	82	с $R_{_{\rm J}}\!\!=\!\!0,\!4R_{_{\rm SH}}$ в режиме рекуперативного торможения $w_{_{\rm T}}\!\!=\!\!1,\!25w_{_{\rm O}}\!,\!M_{_{\rm T}}\!\!=\!\!0,\!9M_{_{\rm H}}$
77.	12	65	740	83	при Φ =0,8 $\Phi_{_{\rm H}}$ в режиме динамического торможения $w_{_{\rm T}}$ =0,9 $w_{_{\rm H}}$, $I_{_{\rm T}}$ =0,95 $I_{_{\rm SH}}$
78.	8	44	820	82	при Φ =0,7 $\Phi_{\rm H}$ в режиме противовключения $w_{\rm r}$ =1,1 $w_{\rm H}$, $I_{\rm r}$ =1,2 $I_{\rm H}$
79.	4	12	1220	76	при U=0,65 $U_{\scriptscriptstyle H}$ в режиме рекуперативного торможения $w_{\scriptscriptstyle T}\!\!=\!\!1,\!05w_{\scriptscriptstyle O},M_{\scriptscriptstyle T}\!\!=\!\!0,\!9M_{\scriptscriptstyle H}$
80.	15	40	710	86	при $R_{_{\rm J}}\!\!=\!\!0,\!25R_{_{\rm S}}$ в режиме противовключения $w_{_{\rm T}}\!\!=\!\!0,\!9w_{_{\rm H}},I_{_{\rm T}}\!\!=\!\!1,\!1I_{_{\rm H}}$
81.	7	19,5	1460	82	при Φ =0,7 Φ _н в режиме динамического торможения $w_{\scriptscriptstyle T}$ =0,9 $w_{\scriptscriptstyle H}$, $I_{\scriptscriptstyle T}$ =0,95 $I_{\scriptscriptstyle SH}$
82.	17	45	1190	87	с $R_{_{\rm J}}\!\!=\!\!0,\!25R_{_{\rm SH}}$ в режиме рекуперативного торможения $w_{_{\rm T}}\!\!=\!\!1,\!25w_{_{\rm O}},M_{_{\rm T}}\!\!=\!\!0,\!9M_{_{\rm H}}$
83.	32	82	980	89	при $U=0.85U_{\rm H}$ в режиме противовключения $w_{\rm T}=1.1w_{\rm H_{2}}~M_{\rm T}=1.2M_{\rm H}$
84.	6,7	19	860	82	с $R_{_{\rm J}}$ =0,25 $R_{_{\rm SH}}$ в режиме рекуперативного торможения $w_{_{\rm T}}$ =1,15 $w_{_{\rm O}}$, $M_{_{\rm T}}$ =1,1 $M_{_{\rm H}}$
85.	4,5	26	1030	78	при Φ =0,85 $\Phi_{_{\rm H}}$ в режиме противовключения $w_{_{\rm T}}$ =1,1 $w_{_{\rm H}}$ $M_{_{\rm T}}$ =1,1 $M_{_{\rm H}}$
86.	6	33	1070	80	при $U=0.8U_{\rm H}$ в режиме динамического торможения $w_{\rm T}\!\!=\!\!0.9w_{\rm H},~I_{\rm T}\!\!=\!\!0.95I_{\rm SH}$
87.	5,5	31	1440	82	при Φ =0,7 $\Phi_{_{\rm H}}$ в режиме рекуперативного торможения $w_{_{\rm T}}$ =1,1 $w_{_{\rm O}}$ $M_{_{\rm T}}$ =1,1 $M_{_{\rm H}}$
88.	4	12	1200	76	при $R_{\rm д}\!\!=\!\!0,\!25R_{\rm яH}$ в режиме противовключения $w_{\rm r}\!\!=\!\!1,\!1w_{\rm H}$, $M_{\rm r}\!\!=\!\!1,\!2M_{\rm H}$
89.	19	102	1500	85	при Φ =0,75 $\Phi_{_{ m H}}$ в режиме рекуперативного торможения $w_{_{ m T}}$ =1,1 $w_{_{ m O}}$, $M_{_{ m T}}$ =1,1 $M_{_{ m H}}$
90.	19	51	1475	80	при $U=0.7U_{\rm H}$ в режиме динамического торможения $w_{\rm T}\!\!=\!\!0.9w_{\rm H},I_{\rm T}\!\!=\!1.1I_{\rm H}$
91.	2,2	13	1000	77	с $R_{_{\rm J}}\!\!=\!\!0,\!25R_{_{\rm SH}}$ в режиме противовключения $w_{_{\rm T}}\!\!=\!\!1,\!1w_{_{\rm H_{_{\rm J}}}}$ $M_{_{\rm T}}\!\!=\!\!1,\!1M_{_{\rm H}}$
92.	4,8	24,2	1500	80	при $U=0.7U_{_{\rm H}}$ в режиме рекуперативного торможения $w_{_{\rm T}}\!\!=\!1.1w_{_{\rm O}}$, $M_{_{\rm T}}\!\!=\!1.1M_{_{\rm H}}$
93.	3,0	75	1250	81	при $U=0.75U_{\rm H}$ в режиме противовключения
94.	5,5	59	1530	80	с $R_{_{\rm J}}\!\!=\!\!0.2R_{_{\rm SH}}$ в режиме рекуперативного торможения $w_{_{\rm T}}\!\!=\!\!1.1w_0~M_{_{\rm T}}\!\!=\!\!1.1M_{_{\rm H}}$
95.	5,5	59	1075	82	при Φ =0,95 Φ _н в режиме динамического торможения $w_{\rm T}$ =0,95 $w_{\rm H}$, $I_{\rm T}$ =1,15 $I_{\rm H}$
96.	19	102	1375	86	при $U=0.9U_{\rm H}$ в режиме рекуперативного торможения $w_{\rm T}=1.1w_0~M_{\rm T}=1.1M_{\rm H}$

№ вари- ри- анта	Р _н , кВт	I _{ян,} А	n _{н,} об/ мин	η _н , %	Искусственные характеристики
1	2	3	4	5	6
97.	2,2	13	975	75	при Ф=0,85Ф _н
					в режиме противовключения $w_{_{T}}=1,1w_{_{H}},M_{_{T}}=1,2M$ н
98.	4,8	24,2	1575	81	при U=0,9U _н
					в режиме рекуперативного торможения $w_{\scriptscriptstyle T}\!\!=\!1,\!1 w_0~M_{\scriptscriptstyle T}\!\!=\!1,\!1 M_{\scriptscriptstyle H}$
99.	30	75	1075	80	при Ф=0,85Ф _н
					в режиме динамического торможения $w_{\scriptscriptstyle T}\!\!=\!\!0,\!9w_{\scriptscriptstyle H},I_{\scriptscriptstyle T}\!\!=\!1,\!1I_{\scriptscriptstyle H}$
100.	5,5	59	1475	81	при R_{π} =0,2 $R_{\text{ян}}$
					в режиме противовключения $w_{T}=1,1w_{H}, M_{T}=1,2M_{H}$
101.	2.2	13	875	74	при Ф=0,85Ф _н
					в режиме рекуперативного торможения $w_{\rm r}$ =1,1 w_0 $M_{\rm r}$ =1,1 $M_{\rm H}$
102.	5,5	59	1475	81	$c R_{\mu} = 0.2 R_{\text{\tiny SH}}$
					в режиме противовключения $w_{t=1,1}w_{t}$, $M_{t}=1,2M$ н
103.	19	102	1575	84	при U=0,9U _н
					в режиме рекуперативного торможения $w_r = 1,1 w_0 M_r = 1,1 M_H$

Задача 2.

Для трехфазного асинхронного двигателя с фазным ротором рассчитать и построить естественную механическую характеристику и искусственную механическую характеристику при добавочном сопротивлении в цепи ротора. $R_{\rm g}$ =0,1 $R_{\rm 2H}$

Данные для расчета приведены в таблице.

Номинальное напряжение 380 В (для всех вариантов).

Номинальная мощность P_{H_s} кВт.

Синхронная частота вращения, n_1 , мин⁻¹.

Номинальное скольжение, $S_{\scriptscriptstyle H}$, %.

Отношение максимального момента к номинальному, $M_{\kappa p} / \, M_{\scriptscriptstyle H}$,

Напряжение ротора U_{2H} , B.

Номинальный ток ротора I_{2H} , A.

При расчетах и построении характеристик необходимо учитывать, что для асинхронного двигателя с фазным ротором формулу Клосса для расчетов можно использовать и при скольжениях больших критического.

Таблица 3

						1
Вариант	$P_{\scriptscriptstyle \mathrm{H}}$, к B т	n_1 , мин ⁻¹	$M_{\rm KP}$ / $M_{\rm H}$	U_{2H} , B	S _H , %	I _{2H} , A
1	2	3	4	5	6	7
1.	11	1500	3	305	5	122
2.	14	1500	3,5	300	4	129
3.	7,5	1000	3,5	300	5	118
4.	10	1000	3,8	310	4,5	120
5.	5,5	750	2,5	300	6,5	114
6.	7,5	750	3	290	6	116
7.	18	1500	4	295	4	138

_		1				таолицы 3
Вариант	Р _н , кВт	n ₁ , мин ⁻¹	$M_{\rm kp}$ / $M_{\rm H}$	U _{2н} , В	S _{H,} %	I_{2H} , A
1	2	3	4	5	6	7
8.	13	1000	4	325	4,5	125
9.	55	500	1,8	165	5	35
10.	45	600	1,8	162	5	78
11.	11	750	3,2	315	5	122,5
12.	22	1500	4	340	2,5	145
13.	30	1500	4	350	2,5	155
14.	18,5	1000	3,5	360	3,5	135
15.	22	1000	3,5	330	3,5	145
16.	15	750	3,0	360	3,5	128
17.	18,5	750	3,0	300	3,5	140
18.	14	1500	3	330	5	127
19.	17	1500	3,5	315	5	134
20.	22	1500	3,2	300	5,5	143
21.	37	1500	3	160	3,5	60
22.	45	1500	3	230	3	70
23.	55	1500	3	200	3	70
24.	30	1000	2,5	140	3,5	50
25.	37	1000	2,5	150	3,5	65
26.	45	1000	2,5	180	3	60
27.	22	750	2,2	102	4,5	40
28.	30	750	2,2	125	4	55
29.	37	750	2,2	148	3,5	55
30.	71	1500	3	250	2,5	70
31.	30	750	1,8	120	5	65
32.	37	750	2,2	115	5,5	90
33.	45	750	2,2	140	4	90
34.	55	750	2,2	190	3,5	85
35.	75	750	1,9	190	4	57
36.	90	1500	2,5	220	4	140
37.	110	1500	2,5	250	3,5	185
38.	11	750	3,2	315	5	122,5
39.	14	750	3,5	310	4,5	128
40.	22	750	2,5	330	4,5	140
41.	30	750	1,8	120	5	65
42.	37	750	2,2	115	5,5	90
43.	45	750	2,2	140	4	90
44.	90	750	1,9	214	4	67
45.	110	750	1,9	225	3,5	111
46.	132	750	1,9	280	3,5	64
47.	11	1500	3	305	5	122
48.	14	1500	3,5	300	4	129
49.	18	1500	4	295	3,5	138
50.	5,5	1500	1,9	144	2	57

1 2 3 4 5 6 7 51. 5,5 1000 2,2 213 2,4 88 52. 7,5 1000 2,5 242 2,3 120,7 53. 11 1000 1,8 179 2,0 41 54. 15 1000 1,8 213 2,0 48 55. 22 1000 2,5 235 2,0 116 56. 30 1000 2,5 235 2,0 73 57. 37 1000 2,2 293 2,0 77 58. 55 1000 2.1 290 2,5 115 59. 7,5 750 1,8 227 2,0 122 60. 11 750 1,9 185 2,2 39 61. 15 750 2,5 241 2,5 59 63. 30 750			1				таолицы 3
51. 5,5 1000 2,2 213 2,4 88 52. 7,5 1000 2,5 242 2,3 120,7 53. 11 1000 1,8 179 2,0 41 54. 15 1000 1,8 213 2,0 48 55. 22 1000 2,5 235 2,0 116 56. 30 1000 2,5 235 2,0 77 58. 55 1000 2,1 290 2,5 115 59. 7,5 750 1,8 227 2,0 122 60. 11 750 1,9 185 2,2 39 61. 15 750 2 206 2,3 48,8 62. 22 750 2,5 241 2,5 59 63. 30 750 2,5 241 2,5 59 63. 30 <t< td=""><td>Вариант</td><td>Р_н , кВт</td><td>n₁, мин⁻¹</td><td>$M_{\rm Kp}$ / $M_{\rm H}$</td><td>U_{2н}, В</td><td>S_{H,} %</td><td>I_{2H}, A</td></t<>	Вариант	Р _н , кВт	n ₁ , мин ⁻¹	$M_{\rm Kp}$ / $M_{\rm H}$	U _{2н} , В	S _{H,} %	I_{2H} , A
52. 7,5 1000 2,5 242 2,3 120,7 53. 11 1000 1,8 179 2,0 41 54. 15 1000 1,8 213 2,0 48 55. 22 1000 2,5 235 2,0 73 56. 30 1000 2,5 235 2,0 73 57. 37 1000 2,2 293 2,0 77 58. 55 1000 2.1 290 2,5 115 59. 7,5 750 1,8 227 2,0 122 60. 11 750 2 206 2,3 48,8 62. 22 750 2,5 241 2,5 59 63. 30 750 2,5 241 2,5 59 63. 30 750 2,5 252 3,0 71 64. 110 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>							-
53. 11 1000 1,8 179 2,0 41 54. 15 1000 1,8 213 2,0 48 55. 22 1000 2,5 235 2,0 116 56. 30 1000 2,5 235 2,0 77 58. 55 1000 2,2 293 2,0 77 58. 55 1000 2,1 290 2,5 115 59. 7,5 750 1,8 227 2,0 122 60. 11 750 1,9 185 2,2 39 61. 15 750 2 206 2,3 48,8 62. 22 750 2,5 252 3,0 71 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
54. 15 1000 1,8 213 2,0 48 55. 22 1000 2,5 235 2,0 116 56. 30 1000 2,5 235 2,0 73 57. 37 1000 2,1 290 2,5 115 59. 7,5 750 1,8 227 2,0 122 60. 11 750 1,9 185 2,2 39 61. 15 750 2 206 2,3 48,8 62. 22 750 2,5 241 2,5 59 63. 30 750 2,5 252 3,0 71 165 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 5 267 1,8 121 165 1,8 135 68. 1							
55. 22 1000 2,5 235 2,0 116 56. 30 1000 2,5 235 2,0 73 57. 37 1000 2,2 293 2,0 77 58. 55 1000 2.1 290 2,5 115 59. 7,5 750 1,8 227 2,0 122 60. 11 750 1,9 185 2,2 39 61. 15 750 2 206 2,3 48,8 62. 22 750 2,5 241 2,5 59 63. 30 750 2,5 241 2,5 59 63. 30 750 2,5 252 3,0 71 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
56. 30 1000 2,5 235 2,0 73 57. 37 1000 2,2 293 2,0 77 58. 55 1000 2,1 290 2,5 115 59. 7,5 750 1,8 227 2,0 122 60. 11 750 1,9 185 2,2 39 61. 15 750 2 206 2,3 48,8 62. 22 750 2,5 252 3,0 71 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600			1000		213		48
57. 37 1000 2,2 293 2,0 77 58. 55 1000 2.1 290 2,5 115 59. 7,5 750 1,8 227 2,0 122 60. 11 750 1,9 185 2,2 39 61. 15 750 2 206 2,3 48,8 62. 22 750 2,5 241 2,5 59 63. 30 750 2,5 252 3,0 71 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600							
58. 55 1000 2.1 290 2,5 115 59. 7,5 750 1,8 227 2,0 122 60. 11 750 1,9 1185 2,2 39 61. 15 750 2 206 2,3 48,8 62. 22 750 2,5 241 2,5 59 63. 30 750 2,5 252 3,0 71 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600	56.	30	1000	2,5	235		
59. 7,5 750 1,8 227 2,0 122 60. 11 750 1,9 185 2,2 39 61. 15 750 2 206 2,3 48,8 62. 22 750 2,5 241 2,5 99 63. 30 750 2,5 252 3,0 71 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750	57.	37	1000	2,2	293	2,0	77
60. 11 750 1,9 185 2,2 39 61. 15 750 2 206 2,3 48,8 62. 22 750 2,5 241 2,5 59 63. 30 750 2,5 252 3,0 71 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750	58.	55	1000	2.1	290	2,5	115
61. 15 750 2 206 2,3 48,8 62. 22 750 2,5 241 2,5 59 63. 30 750 2,5 252 3,0 71 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 165 65. 90 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750 5,5 115 2,2 90 74. 22 750	59.	7,5	750	1,8	227	2,0	122
62. 22 750 2,5 241 2,5 59 63. 30 750 2,5 252 3,0 71 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750	60.	11	750	1,9	185	2,2	39
63. 30 750 2,5 252 3,0 71 64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750	61.	15	750	2	206	2,3	48,8
64. 110 500 4 265 1,7 165 65. 90 500 4 222 1,7 159 66. 75 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750	62.	22	750	2,5	241	2,5	59
65. 90 500 4 222 1,7 159 66. 75 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750	63.	30	750	2,5	252	3,0	71
66. 75 500 5 207 1,8 121 67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750	64.	110	500	4	265	1,7	165
67. 55 500 5 165 1,8 135 68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000	65.	90	500	4	222	1,7	159
68. 110 600 3,8 283 1,7 142 69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000	66.	75	500	5	207	1,8	121
69. 75 600 4,5 217 1,8 121 70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000	67.	55	500	5	165	1,8	135
70. 45 600 5 162 1,8 78 71. 110 750 3,5 214 1,9 107 72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000	68.	110	600	3,8	283	1,7	142
71. 110 750 3,5 214 1,9 107 72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000	69.	75	600	4,5	217	1,8	121
72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000	70.	45	600	5	162	1,8	78
72. 30 750 5 120 1,8 65 73. 37 750 5,5 115 2,2 90 74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000	71.	110	750	3,5	214	1,9	107
74. 22 750 4,5 330 2,5 140 75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000	72.	30	750		120	1,8	65
75. 14 750 4,5 310 3,5 128 76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000	73.	37	750	5,5	115	2,2	90
76. 11 750 5 315 3,1 122,5 77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500	74.	22	750	4,5	330	2,5	140
77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500	75.	14	750	4,5	310	3,5	128
77. 45 750 4 140 2,2 90 78. 55 750 3,5 190 2,1 85 79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500	76.	11	750	5	315	3,1	122,5
79. 90 1000 3,6 202 1,9 77 80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750	77.	45	750	4	140	2,2	
80. 75 1000 3 250 2,5 102 81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750	78.	55	750	3,5	190	2,1	85
81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	79.	90	1000	3,6	202	1,9	77
81. 55 1000 3,5 190 2,5 85 82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	80.	75	1000		250	2,5	102
82. 37 1000 4 140 1,9 80 83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	81.	55	1000	3,5	190	2,5	85
83. 30 1000 4 375 3 146 84. 22 1000 3,5 380 3 137 85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	82.	37	1000		140		80
85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	83.	30	1000	4	375		146
85. 17 1000 6 335 3 132,5 86. 13 1000 7 205 3 42 87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	84.	22	1000	3,5	380	3	137
87. 22 1000 5 380 2,5 135 88. 110 1500 3,5 250 2,5 60 89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	85.		1000		335		132,5
88. 110 1500 3,5 250 2,5 60 89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	86.	13	1000	7	205	3	42
89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	87.	22	1000	5	380	2,5	135
89. 90 1500 4 220 2,5 160 90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	88.	110	1500	3,5	250	2,5	60
90. 75 1500 4,5 180 2,3 50 91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	89.	90	1500		220		160
91. 37 750 3,4 158 2,2 55 92. 30 750 4 125 2,0 48	90.	75	1500	4,5	180		50
92. 30 750 4 125 2,0 48	91.	37	750	3,4	158		55
	92.	30	750		125		48
	93.	22	750	4,5	102	2,5	32

Вариант	P _н , кВт	n_1 , мин $^{-1}$	$M_{\rm kp}$ / $M_{\rm H}$	U _{2н} , В	S _H , %	I_{2H} , A
1	2	3	4	5	6	7
94.	18,5	750	3,5	300	3,1	140
95.	15	750	3,4	360	3,0	128
96.	45	1000	2,5	180	2,0	55
97.	30	1000	3,0	330	2,5	145
98.	70	1500	2,5	255	3,0	170
99.	55	1500	3,0	210	30	65
100.	37	1500	3,5	350	3,0	155

Задача 3

Построить естественную механическую характеристику асинхронного двигателя с короткозамкнутым ротором. Построить характеристику с уменьшенным на 20% напряжением питания. Данные двигателя приведены в таблице 4.

Таблица 4

No	ТИП	Ρ,	s, %	η, %	cos φ	$M_{max}/M_{\scriptscriptstyle H}$	M_{Π}/M_{H}	$M_{min}/M_{\rm H}$	I_{Π}/I_{H}		
варианта	1 1111	кВт	5, 70	1[, 70	τος ψ	IVI _{max} / IVI _H	1 V1 _{II} / 1 V1 _H	IVI _{min} / IVI _H	1 Π/ 1 Η		
1	2	3	4	5	6	7	8	9	10		
	Синхронная частота 1500 мин-1										
1.	4AA50A4	0,06	8,1	50	0,6	2,2	2	1,2	5		
2.	4AA50B4	0,09	8,6	55	0,6	2,2	2	1,2	5		
3.	4AA56A4	0,12	8	63	0,66	2,2	2	1,2	5		
4.	4AA56B4	0,18	8,7	64	0,64	2,2	2	1,2	5		
5.	4A63A4	0,25	8	68	0,65	2,2	2	1,2	5		
6.	4A63B4	0,37	9	68	0,69	2,2	2	1,2	5		
7.	4A71A4	0,55	8,7	70,5	0,70	2,2	2	1,6	4,5		
8.	4A71B4	0,75	8,7	72	0,73	2,2	2	1,6	4,5		
9.	4A80A4	1,1	6,7	75	0,81	2,2	2	1,6	5		
10.	4A80B4	1,5	6,7	77	0,83	2,2	2	1,6	5		
11.	4A90L4	2,2	5,4	80	0,83	2,2	2	1,6	6		
12.	4A100S4	3	5,3	82	0,83	2,2	2	1,6	6,5		
13.	4A100L4	4	5,3	84	0,84	2,2	2	1,6	6		
14.	4A112M4	5,5	5	85,5	0,86	2,2	2	1,6	7		
15.	4A132S4	7,5	3	87,5	0,86	2,2	2	1,6	7,5		
16.	4A132M4	11	2,8	87,5	0,87	2,2	2	1,6	7,5		
17.	4A160S4	15	2,7	89	0,88	2,2	1,4	1	7		
18.	4A160M4	18,5	2,7	90	0,88	2,2	1,4	1	7		
19.	4A180S4	22	2	90	0,9	2,2	1,4	1	7		

No	ТИП	P,	s, %	η, %	cos (0	$M_{\rm max}/M_{\scriptscriptstyle m H}$	M_{Π}/M_{H}	$M_{min}/M_{_{ m H}}$	I_{Π}/I_{H}
варианта		кВт	~,	- [, , ,	Ψ	шахн	IIH	HIIIIIH	-II [,] -H
1	2	3	4	5	6	7	8	9	10
20.	4A180M4	30	2	91	0,89	2,2	1,4	1	7
21.	4A200M4	37	1,7	91	0,9	2,2	1,4	1	7
22.	4A200L4	45	1,8	92	0,9	2,2	1,4	1	7
23.	4A225M4	55	2	92,5	0,9	2,2	1,2	1	7
24.	4A250S4	75	1,4	93	0,9	2,2	1,2	1	7
25.	4A250M4	90	1,3	93	0,91	2,2	1,2	1	7
26.	4A280S4	110	2,3	92,5	0,9	2	1,2	1	7
27.	4A280M4	132	2,3	93	0,9	2	1,2	1	7
28.	4A315S4	160	2	93,5	0,91	1,9	1	0,9	6,5
29.	4A315M4	200	1,7	94	0,92	1,9	1	0,9	7
30.	4A355S4	250	1,7	94,5	0,92	1,9	1	0,9	7
31.	4A355M4	315	1,7	94,5	0,92	1,9	1	0,9	7

2. Реостатный пуск электродвигателей

2.1. Примеры решения задач

Задача 1.

Для двигателя постоянного тока независимого возбуждения построить естественную механическую характеристику и выбрать пусковой реостат (для пуска двигателя в 3 ступени). Паспортные данные двигателя: $P_{\rm H}$ =11 кBт, $U_{\rm H}$ =220 В, $I_{\rm H}$ =62 А, $n_{\rm H}$ =1000 об/мин.

Примечание. При решении задачи считать, что ток якоря равен току двигателя (пренебречь током возбуждения), момент на валу равен электромагнитному моменту двигателя (пренебречь моментом потерь вращения).

Решение.

Номинальное сопротивление двигателя:

$$R_{\rm H} = \frac{U_{\rm H}}{I_{\rm H}} = \frac{220}{62} = 3,55 \text{ Om}$$

Коэффициент полезного действия двигателя при номинальной нагрузке:

$$\eta_{\rm H} = \frac{{\rm P}_{\rm H} \cdot 10^3}{U_{\rm H} I_{\rm H}} = \frac{11 \cdot 10^3}{220 \cdot 62} = 0.805$$

Сопротивление якоря двигателя:

$$R_{\rm g} \approx 0.5(1 - \eta_{\rm H})R_{\rm H} = 0.5 \cdot (1 - 0.805) \cdot 3.55 = 0.344 \, \text{Om} \, (189)$$

Скорость идеального холостого хода двигателя:

$$\omega_0 = \frac{U_{\rm H}}{C_e} = \frac{U_{\rm H}}{k\Phi} = \frac{220}{1.9} = 115.8 \,\mathrm{c}^{-1},$$

где
$$C_e = k\Phi = \frac{U_{\text{H}} - I_{\text{H}} R_{\text{H}}}{\omega_{\text{H}}} = \frac{220 - 62 \cdot 0,344}{104,7} = 1,9 \text{ B·c};$$

$$\omega_{\rm H} = \frac{2\pi n_{\rm H}}{60} = \frac{2\cdot 3.14\cdot 1000}{60} = 104.7 \text{ c}^{-1}$$

Естественная характеристика представляет собой прямую линию, проходящую через точки ω_0 =115,8 с⁻¹, I=0 и $\omega_{\rm H}$ = 104,7 с⁻¹, I=I_H=62 A. Номинальный момент двигателя:

$$M_{\rm H} = \frac{P_{\rm H}}{\omega_{\rm H}} = \frac{11 \cdot 10^3}{104,7} = 105,1 \; \text{H} \cdot \text{M}$$

Значение максимального момента и момента переключения (максимальный и минимальный пусковые моменты):

$$M_1 = (2.0 \div 2.5) \cdot M_H = 2.5 \cdot M_H = 2.5 \cdot 105.1 = 262.75 \text{ H·m}, (193)$$

$$M_2 = (1.05 \div 1.5) \cdot M_H = 1.5 \cdot M_H = 1.5 \cdot 105.1 = 157.65 \text{ H·m} (194)$$

По естественной механической характеристике и найденным значениям моментов строят пусковую диаграмму (рисунок 3)

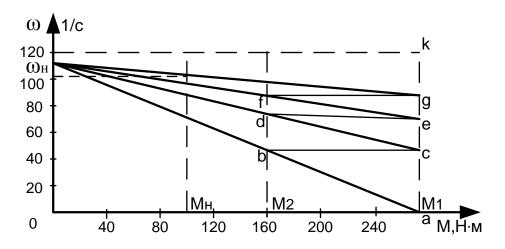


Рисунок 3. Пусковая диаграмма двигателя

Отрезки на линии ak соответствуют величинам пусковых сопротивлений в определенном масштабе. Для определения этого масштаба необходимо найти сопротивление всей якорной цепи, соответствующее полному сопротивлению реостата, включенному в якорь (реостатная характеристика, проходящая через точку «а»).

$$R_{\rm H} = \frac{U_{\rm H}}{I_1} = \frac{U_{\rm H}}{2.5I_{\rm H}} = \frac{220}{2.5\cdot62} = 1.42 \text{ Om}$$

Отсюда масштаб сопротивлений:

$$m_R = \frac{R_1}{ak} = \frac{1,42}{115} = 0.0123 \text{ OM/MM}$$

Пусковые сопротивления R_n различных ступеней пускового реостата:

$$R_{n1} = acm_R = 47,2 \cdot 0,0123 = 0,58 \,\mathrm{OM},$$
 $R_{n2} = cem_R = 27 \cdot 0,0123 = 0,33 \,\mathrm{OM},$ $R_{n3} = gem_R = 13,5 \cdot 0,0123 = 0,17 \,\mathrm{OM}$

Полное сопротивление пускового реостата:

$$R_n = R_{n1} + R_{n2} + R_{n3} = agm_R = 1$$
,08 Ом

Задача 2.

Определить графически и аналитически величины и число ступеней пускового реостата для ДПТ НВ типа 4ПНМ180Ь, имеющего следующие паспортные данные:

$$P_{\rm H} = 10 \; {
m \kappa Bt}; \; U_{
m H} = 220 \; {
m B}; \; I_{
m H} = 53 \; {
m A}; \; n_{
m H} = 1100 \; {
m of/muh}; \; {
m a}_{
m H} = 83,6\% \, .$$

Внутреннее сопротивление $R_{\rm g}$, Ом, цепи якоря:

$$R_{_{
m H}} pprox 0.5(1-3_{_{
m H}})rac{U_{_{
m H}}}{I_{_{
m H}}}$$
 $R_{_{
m H}} = 0.5(1-0.836)rac{220}{53} = 0.34~{
m Om}$ $R_{_{
m H}} = rac{U_{_{
m H}}}{I_{_{
m H}}}$ $R_{_{
m H}} = rac{220}{53} = 4.15~{
m Om}$

Номинальная скорость вращения $\omega_{\rm H}$, рад/с, электродвигателя:

$$arphi_{
m H}=rac{{
m p}\cdot n_{
m H}}{30}$$
 $arphi_{
m H}=rac{3,14\cdot 1100}{30}=115,1\ {
m pag/c}$

Скорость вращения идеального холостого хода що, рад/с, ДПТ

$$\omega_0 = rac{U_{
m H} \cdot \omega_{
m H}}{U_{
m H} - I_{
m H} \cdot R_{
m H}}$$
 $\omega_0 = rac{220 \cdot 115,1}{220 - 53 \cdot 0,34} = 124,3 \
m pag/c$

Номинальный электромагнитный момент $M_{\rm H}$ H · м,

$$\mathrm{M}_{\mathrm{H}} = \mathrm{C}_{\mathrm{H}} \cdot I_{\mathrm{H}}$$
 $\mathrm{M}_{\mathrm{H}} = 1.7 \cdot 53 = 90 \; \mathrm{H} \cdot \mathrm{M}$

Пусковой момент M_1 H · м, (задаёмся крайним правым пределом - 2,5)

$$M_1 = 2,5 \cdot M_H$$
 $M_1 = 2,5 \cdot 90 = 225 \ H \cdot M$

Дано: $\rm M_1=2.5\cdot M_H=225~H\cdot M$; $\rm M_2=1.5\cdot M_H=135~H\cdot M$; $\it I_1=2.5\cdot I_H=132.5~A$;

Определяем величину сопротивления второй ступени R_2 , Ом, пускового реостата

$$R_N = rac{U_{
m H}}{I_1}$$
 $R_N = rac{220}{132.5} = 1.66 \
m Om$ $R_N = rac{M_{
m H} \cdot R_{
m H}}{M_1}$ $R_N = rac{90 \cdot 4.15}{225} = 1.66 \
m Om$

Колебания момента (тока) при пуске:

$$\lambda = \frac{M_1}{M_2}$$

$$\lambda = \frac{225}{135} = 1,66$$

Количество ступеней пускового реостата:

$$m = \frac{lg \frac{R_{\rm H}}{R_{\rm H}}}{lg \lambda}$$

$$m = \frac{lg \frac{1,66}{0,34}}{lg1,66} = 3,09$$

Принимаем m=3. Рассчитываем уточнённое значение λ

$$\lambda = \sqrt[m]{\frac{R_N}{R_{\mathfrak{R}}}}$$

$$\lambda = \sqrt[3]{\frac{1.66}{0.34}} = 1.69$$

Величины сопротивлений ступеней пускового реостата

$$R_3 = R_{\mathrm{ff}} \cdot (\lambda - 1)$$
 $R_3 = 0.34 \cdot (1.69 - 1) = 0.24 \,\mathrm{Om}$ $R_2 = R_3 \cdot \lambda$ $R_2 = 0.24 \cdot 1,69 = 0,4 \,\mathrm{Om}$ $R_1 = R_2 \cdot \lambda$ $R_1 = 0.4 \cdot 1,69 = 0,67 \,\mathrm{Om}$

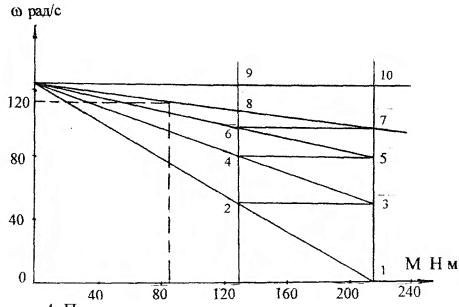


Рисунок 4. Пусковая характеристика

Задача 3.

Определить число и величины сопротивлений секций пускового реостата для $A \mbox{\it Д}$ с фазным ротором $A \mbox{\it ИР} \Phi 200 \mbox{\it M4}$, имеющего следующие паспортные данные:

$${\rm P_{H}}=22{\rm \kappa Bt};\,n_{c}=1500$$
об/мин; $\mathcal{S}_{\rm H}=$ 2,5%; $\mu_{\rm \kappa p}=$ 2,5;

Данные ротора: $E_{2H} = 340 \text{ B}$, $I_{2H} = 45 \text{ A}$.

Решение:

Дано: ${\rm M_1}=305$,4 ${\rm H\cdot m}$; ${\rm M_2}=168~{\rm H\cdot m}$; ${\rm M_H}=143$,7 ${\rm H\cdot m}$; $R_{\rm p}=0$,1 ${\rm Om}$; $R_{\rm 2H}=4$,36 ${\rm Om}$;

Колебания момента при пуске:

$$\lambda = \frac{M_1}{M_2};$$

$$\lambda = \frac{305,4}{168} = 1,82;$$

Количество ступеней пускового реостата:

$$m = \frac{lg \frac{M_{H}}{R_{p}} \frac{R_{2H}}{M_{1}}}{lg \lambda}$$

$$m = \frac{lg \frac{143,7}{0,1} \frac{4,36}{305,4}}{lg1,82} = \frac{1,31}{0,26} = 5,03$$

Принимаем m целым числом: m=5 Рассчитываем уточнённое значение λ

$$\lambda = \sqrt[m]{\frac{R_{2H}M_H}{R_pM_1}}$$

$$\lambda = \sqrt[5]{\frac{143,7 \cdot 4,36}{0,1 \cdot 305,4}} = 1,83$$

Величины сопротивлений секций пускового реостата:

$$R_5 = R_p(\lambda - 1);$$
 $R_5 = 0.1(1.83 - 1) = 0.083 \, \mathrm{Om};$ $R_4 = R_5 \cdot \lambda;$ $R_4 = 0.083 \cdot 1.83 = 0.15 \, \mathrm{Om};$ $R_3 = R_4 \cdot \lambda;$

$$R_3 = 0.15 \cdot 1.83 = 0.27 \, \mathrm{Om};$$
 $R_2 = R_3 \cdot \lambda;$ $R_2 = 0.27 \cdot 1.83 = 0.49 \, \mathrm{Om};$ $R_1 = R_2 \cdot \lambda;$ $R_1 = 0.49 \cdot 1.83 = 0.896 \, \mathrm{Om};$

Суммарное сопротивление роторной цепи R_N , Ом, при полностью введённом пусковом реостате:

$$R_n = \Sigma R = R_{\rm p} + R_1 + R_2 + R_3 + R_4 + R_5;$$

$$R_n = \Sigma R = 0.1 + 0.896 + 0.49 + 0.27 + 0.15 + 0.083 = 1.989 \ \rm Om.$$

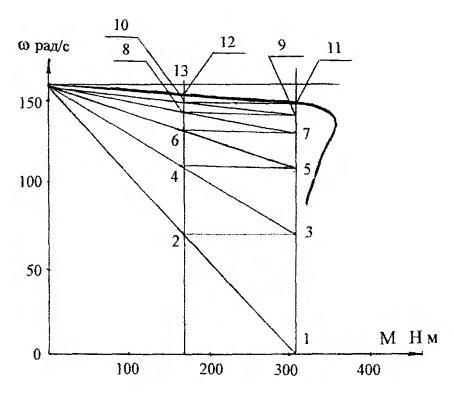


Рисунок 5. Пусковая характеристика

2.2 Задачи для самостоятельного решения

Задача 1.

Найти пусковой ток и пусковой момент двигателя постоянного тока, величину добавочного сопротивления для снижения пускового тока в 2 раза. Двигатель: 2ПН90МУХЛ4 Его паспортные данные:

Рн, кВт	U _н , В	n _н , мин ⁻¹	$\eta_{\scriptscriptstyle \mathrm{H}},\%$	R _я , Ом	R _д , Ом
1	220	3000	72,5	2,52	1,47

Задача 2.

При каком добавочном сопротивлении в цепи ротора асинхронный двигатель с фазным ротором при номинальной нагрузке на валу не будет вращаться.

Двигатель: 4AК160S4У3 Его паспортные данные:

Р _н , кВт	U _н , В	n _н , мин ⁻¹	ηн, %	Cosφ	$\mu_{\scriptscriptstyle m K}$	I_{2H}	$E_{2\kappa}$
11	220	1425	86,5	0,86	3	22	305

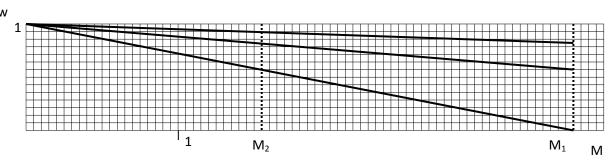
Задача 3.

При каком добавочном сопротивлении в цепи ротора в асинхронном двигателе с фазным ротором критическое скольжение возрастет до 1.

Двигатель: 4АК160М6У3 Его паспортные данные:

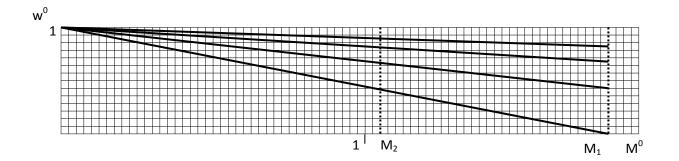
Р _н , кВт	U _н , В	S _H , %	ηн, %	Cosφ	n ₁ , мин ⁻¹	$\mu_{\scriptscriptstyle K}$	I _{2H}	$E_{2\kappa}$
10	220	4,5	84,5	0,76	1000	3,8	20	310

Задача 4.


Построить пусковую характеристику двигателя постоянного тока в относительных единицах по данным: $M_1^o=2,5$; $M_2^o=1,2$; m=3.

Задача 5.

Построить пусковую характеристику асинхронного двигателя в относительных единицах по данным: $M_1^{\ o}=2;\ M_2^{\ o}=1,2;\ m=3;\ \mu_\kappa=2,5.$


Задача 6.

По пусковой характеристике графически найти сопротивление секций пускового реостата. Сопротивление якоря – 1 Ом. Характеристика задана в относительных единицах

Задача 7.

По пусковой характеристике графически найти сопротивление секций пускового реостата. Сопротивления якоря – 0,5 Ом.

2.3 Контрольные задания

Задача 1.

Для двигателя постоянного тока аналитически рассчитать сопротивление секций пускового реостата для условий форсированного пуска ($\lambda=2$ -2,5). Данные двигателя приведены в таблице.

Таблица 5.

Вариант	Тип двигателя	Номинальная мощность, кВт УХЛ4	Номинальное напряжение, В	Ток якоря, А УХЛ4	Номинальная частота вращения, мин ⁻¹	
1	2	3	4	5	6	
1		0.25	110	3,5	1000	
2		0,25	220	1,8	1000	
3		0,37	110	5,0	1500	
4	4ПО80А2	0,57	220	2,5	1300	
5	411O8UA2	0,55	110	7,0	2200	
6		0,55	220	3,5	2200	
7		0,75	110	9,4	3000	
8		0,73	220	4,7	3000	
9		0,37	110	4,8	1000	
10		0,37	220	2,4	1000	
11		0,55	110	7,4	1500	
12	4ПО80В1	0,33	220	3,7	1300	
13	1110001	0,75	110	9,4	2200	
14		0,73	220	4,7	2200	
15		1,1	110	13,0	3000	
16		1,1	220	6,5	3000	
17		0,18	110	2,8	1000	
18	4ПБ80А2	·	220	1,4		
19		0,25	110	3,4	1500	

Вариант	Тип двигателя	Номинальная мощность, кВт УХЛ4	Номинальное напряжение, В	Ток якоря, А УХЛ4	Номинальная частота вращения, мин ⁻¹		
1	2	3	4	5	6		
20	2	3	220	1,7	U		
21			110	4,6			
22		0,37	220		2200		
23			110	2,3			
24		0,55	220	7,0	3000		
25			110	3,5			
		0,25		3,4	1000		
26			220	1,7			
27		0,37	110	4,8	1500		
28	4ПБ80В1		220	2,4			
29		0,55	110	6,8	2200		
30		,	220	3,4			
31		0,80	110	9,2	3000		
32		,	220	4,6			
33		0,37	110	5,0	750		
34			220	2,3			
35		0,55	110	7,3	1000		
36		3,22	220	3,5	1000		
37	4ΠΟ100S1	0,75	110	9,2	1500		
38	411010031	0,73	220	4,5	1500		
39		1,1	110	12,8	2200		
40		1,1	220	6,4	2200		
41		1,6	110	19,0	3000		
42		1,0	220	9,5	3000		

Задача 2.

Для асинхронного электродвигателя с фазным ротором аналитически рассчитать сопротивление секций пускового реостата. Данные двигателя приведены в таблице.

Таблица 6

Вариант	Типоразмер	Мощность, кВт	Скольжение, %	КПД (%)	cos φ	$M_{ m max}/M_{ m H}$	Ток ротора, А	Напряжение ротора, В	
1	2	3	4	5	6	7	8	9	
		Синхронная частота 1500 мин-1							
1	4AK160S4	11	5	86,5	0,86	3	22	305	
2	4AK160M4	14	4	88,5	0,87	3,5	29	300	
3	4AK180M4	18	3.5	89	0,88	4	38	295	

	продолжение таолицы о							
Вариант	Типоразмер	Мощность, кВт	Скольжение, %	КПД (%)	cos φ	$M_{\text{max}}/M_{\scriptscriptstyle H}$	Ток ротора, А	Напряжение ротора, В
1	2	3	4	5	6	7	8	9
4	4AK200M4	22	2.5	90	0,87	4	45	340
5	4AK200L4	30	2.5	90,5	0,87	4	55	350
6	4AK225M4	37	3.5	90	0,87	3	160	160
7	4AK250SA4	45	3	91	0,88	3	170	230
8	4AK250SB4	55	3	90,5	0,9	3	170	200
9	4AK250M4	71	2.5	91,5	,		170	250
		(инхронная ча	стота	100	0 мин ⁻¹		
10	4AK160S6	7.5	5	82,5	0,77	3,5	18	300
11	4AK160M6	10	4.5	84,5	0,76	3,8	20	310
12	4AK180M6	13	4.5	85,5	0,8	4	25	325
13	4AK200M6	18.5	3.5	88	0,81	3,5	35	360
14	4AK200L6	22	3.5	88	0,8	3,5	45	330
15	4AK225M6	30	3.5	89	0,85	2,5	150	140
16	4AK250S6	37	3.5	89	0,84	2,5	165	150
17	4AK250M6	45	3		0,87		160	180
		(Синхронная ч	астот	a 750	мин ⁻¹		
18	4AK160S8	5.5	6.5	80	0,7	2,5	14	300
19	4AK160M8	7.5	6	82	0,7	3	16	290
20	4AK180M8	11	4	85,5	0,72	3,5	25	270
21	4AK200M8	15	3.5	86	0,7	3	28	360
22	4AK200L8	18.5	3.5	86	0,73	3	40	300
23	4AK225M8	22	4.5	87	0,82	2,2	140	102
24	4AK250S8	30	4	88,5	0,81	2,2	155	125
25	4AK250M8	37	3.5	89	0,8	2,2	155	148

3. Механика и динамика электропривода

3.1 Примеры решения задач

Задача 1.

Определить потребную (расчётную) мощность асинхронного электродвигателя с к.з. ротором с синхронной частотой вращения $n_{\rm c}=1500~{\rm Muh}^{-1}$, приводящего в движение рабочую машину. Кинематическая схема привода рабочей машины представлена на рисунке 6.

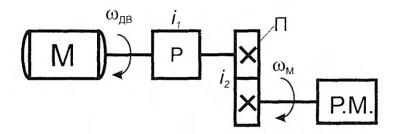


Рисунок 6. Кинематическая схема системы «электродвигатель — рабочая машина». М — электродвигатель; Р — редуктор; П- клиноремённая передача; Р.М, - рабочая машины; i_1 - передаточное отношение редуктора; i_2 - передаточное отношение клиноременный передачи; $\mathbf{u}_{\text{дв}}$ - угловая скорость вращения вала электродвигателя; $\mathbf{u}_{\text{м}}$ —угловая скорость вращения вала рабочей машины.

Момент сопротивления на валу рабочей машины: $\rm M_{m}=1200~H^{\circ}m$; Передаточное отношение редуктора i_1 =28; передаточное отношение клиноремённой передачи, i_2 - = 2; к.п.д. редуктора $\rm 3_p=0.86$; к.п.д. клиноремённой передачи $\rm \eta_{nep}=0.88$.

Решение:

Скорость вращения $\omega_{\text{лв}}$, рад/с, электродвигателя

$$\omega_{\rm AB} = \frac{\mathbf{p} \cdot n_{\rm c}}{30}$$

$$\omega_{\rm дв} = \frac{3,14 \cdot 1500}{30} = 157 \ {\rm pag/c.}$$

Общее передаточное отношение

$$i = i_1 \cdot i_2 = 28 \cdot 2 = 56$$

Общий к.п.д. системы

$$\eta_{_{\mathrm{II}}}=\eta_{_{\mathrm{p}}}\cdot\eta_{_{\mathrm{nep}}}=0.86\cdot0.8=0.69$$

Момент сопротивления рабочей машины M_{ch} $H \cdot M$, приведённый к валу электродвигателя

$$M_{CH} = \frac{M_{M}}{i \cdot \eta_{H}} = \frac{1200}{56 \cdot 0.69} = 31 \text{ H} \cdot \text{M}$$

Расчётная мощность Ррас - Вт, электродвигателя

$$P_{
m pac} = M_{
m ch} \cdot \omega_{
m дB} = 31 \cdot 157 = 4867 \ {
m BT}$$

Задача 2.

Определить потребную (расчётную) мощность асинхронного электродвигателя с к.з. ротором с синхронной частотой вращения $n_{\rm c}=1000$ мин⁻¹, приводящего в движение рабочую машину. Кинематическая схема привода рабочей машины представлена на рисунке 7.

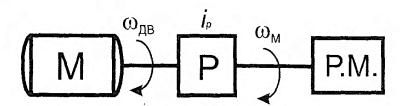


Рисунок 7. Кинематическая схема системы «электродвигатель – рабочая машина».

Рабочая машина совершает поступательное движение и проходит расстояние S=6 метров за 40 секунд; к.п.д. редуктора $\eta_p=0,66$; Усилие необходимое для передвижения механизма F=36000 H.

Решение:

Скорость вращения $\omega_{\rm дв}$, рад/с, электродвигателя

$$\omega_{\rm AB} = \frac{{\rm p} \cdot n_{\rm c}}{30}$$

$$\omega_{\rm дв} = \frac{3.14 \cdot 1000}{30} = 105 \ {\rm pag/c}.$$

Скорость поступательного движения v, м/с, рабочей машины

$$v = \frac{S}{t}$$
$$v = \frac{6}{40} = 0.15 \text{ m/c}$$

Момент сопротивления рабочей машины M_{ch} $H \cdot M$, приведённый к валу электродвигателя

$$M_{\text{cH}} = \frac{F \cdot v}{\omega_{\text{дв}} \cdot \eta_{\text{п}}} = \frac{36000 \cdot 0,15}{105 \cdot 0,66} = 78 \text{ H} \cdot \text{м}$$

Расчётная мощность P_{pac} -Вт, электродвигателя

$$P_{pac} = M_{ch} \cdot \omega_{dB} = 78 \cdot 105 = 8190 \text{ BT}$$

Задача 3.

Определить расчётную мощность асинхронного электродвигателя с к.з. ротором и момент инерции системы «электродвигатель - механизм подъёмной лебёдки», кинематическая схема которой представлена на рисунке 8.

Дано:

Скорость вращения приводного электродвигателящ_{дв} = 157 рад/с; момент инерции электродвигателя $J_{\rm дв}=0.08$ кг м²; к.п.д. передачи $\eta_{\rm n}$ = 0.92; масса барабана $m_{\rm 6}=1400$ кг; радиус барабана R=1.25 м; масса груза $m_{\rm rp}=200$ кг; скорость поступательного движения груза v=0.22 м/с; коэффициент трения $f_{\rm rp}=0.66$.

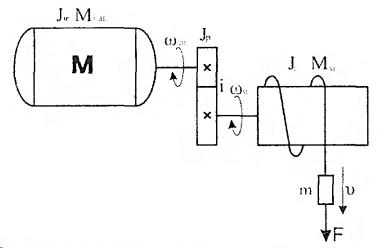


Рисунок 8. Кинематическая схема системы «электродвигатель-подъемная лебедка»

Решение:

Момент инерции барабана относительно своей оси $J_{\text{бар}}$, кг · м², как для сплошного цилиндра:

$$J_{6ap} = m_6 \cdot p^2 = m_6 \cdot \frac{R^2}{2}$$

где $m_{\rm 6}$ - масса барабана, кг;

р - радиус инерции сплошного цилиндра, м;R - радиус барабана, м;

$$J_{\text{бар}} = 1400 \cdot \frac{1.25^2}{2} = 1093 \text{ кг} \cdot \text{м}^2$$

Скорость вращения $\omega_{\text{дв}}$, рад/с, вала машины

$$\omega_{\mathrm{дB}}=rac{2\cdot\mathrm{p}\cdot\mathrm{v}}{R}$$
 $\omega_{\mathrm{дB}}=rac{2\cdot3.14\cdot0.22}{1.25}=1.1\ \mathrm{pag/c}$

Момент инерции машины, приведённый к валу электродвигателя

$$J_{\rm M} = J_{\rm c} \frac{\omega_{\rm M}^2}{\omega_{\rm AB}^2} + m \frac{v^2}{\omega_{\rm AB}^2}$$

$$J_{\rm M} = 1093 \frac{1.1^2}{157^2} + 200 \frac{0.22^2}{157^2} = 0.0544 \; {\rm K} {\rm \Gamma} \cdot {\rm M}^2$$

Момент инерции $J_{\rm p}$, кг · м². Редуктора

$$J_{
m p} = 1,1 \cdot J_{
m ДB}$$
 $J_{
m p} = 1,1 \cdot 0,08 = 0,088~{
m kg} \cdot {
m m}^2$

Момент инерции $J_{\rm cuc}$ кг · м² системы

$$J_{
m cuc} = J_{
m дB} + J_{
m p} + J_{
m M}$$
 $J_{
m cuc} = 0.08 + 0.088 + 0.0544 = 0.222 \ {
m kr} \cdot {
m m}^2$

Передаточное отношение редуктора

$$i = \frac{\omega_{\text{дB}}}{\omega_{\text{M}}} = \frac{157}{1.1} = 142$$

Усилие F, H, необходимое для поднятия груза

$$F = 9.81 \cdot m_{\rm rp} \cdot f_{\rm rp}$$

$$F = 9.81 \cdot 200 \cdot 0,66 = 1295 \text{ H}$$

где $m_{\rm rp}$ - масса груза, кг; $f_{\rm rp}$ - коэффициент трения ($f_{\rm rp}$ = 0,66);

Вращающий момент механизма $M_{\rm M}$ H · м, подъёма груза на своём валу

$$M_{M} = F \cdot R$$

$$M_{M} = 1295 \cdot 1.25 = 1619 \text{ H} \cdot \text{M}$$

Вращающий момент M_{ch} $H \cdot m$, механизма подъёма груза, приведённый к валу электродвигателя

$$M_{\rm ch} = \frac{M_{\rm M}}{i \cdot \eta_{\rm m}}$$

$$M_{CH} = \frac{1619}{142 \cdot 0.92} = 12.4 \text{ H} \cdot \text{M}$$

где $M_{\rm m}$ - вращающий момент барабана относительно оси, проходящей через центр тяжести и проходящей параллельно длине барабана, $H \cdot m$;

і - передаточное отношение редуктора;

$$\eta_{_{\Pi}}$$
 - к.п.д. редуктора/

Расчётная мощность P_{pac} Вт, приводного электродвигателя механизма подъёма груза

$$P_{pac} = M_{ch} \cdot \omega_{dB} B_{T}$$

$$P_{pac} = 12.4 \cdot 157 = 1947 \text{ BT}$$

Задача 4.

Грузоподъёмная лебёдка, кинематическая схема которой представлена на рисунке 9 имеет грузоподъёмность: вес поднимаемого груза и крюка G = 22600 H.

Диаметр барабана $D_6=0,4$ м; к.п.д. барабана $3_6=0,97$; к.п.д. редуктора $3_{\Pi}=0,96$; скорость вращения электродвигателя $\omega_{\rm дB}=104,5\,$ рад/с; передаточное отношение редуктора i=25; момент инерции электродвигателя $J_{\rm дB}=0,84\,$ кг-м²; момент инерции барабана на своём валу $J_6=77,5\,$ кг · м²;

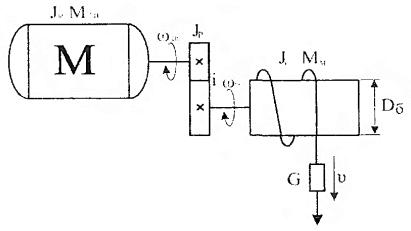


Рисунок 9. Кинематическая схема грузоподъемной лебедки

Определить:

- а) скорость подъёма груза;
- б) моменты на валах барабана и электродвигателя при подъёме и опускании груза;
 - в) мощность на валу электродвигателя при подъёме груза;
- г) момент инерции системы «электродвигатель механизм подъёма груза».

Решение:

Скорость вращения щм, рад/с, барабана

$$\omega_{\rm M} = \frac{\omega_{\rm AB}}{i}$$

$$\omega_{\rm M} = \frac{104.5}{25} = 4.18 \, {\rm pag/c}$$

Скорость поступательного движения v, м/с, перемещения груза

$$v = \frac{\omega_{\rm M} \cdot R}{2 \cdot \rm p}$$

$$v = \frac{4.18 \cdot 0.4/2}{2 \cdot 3.14} = 0.133 \text{ m/c}$$

Вращающий момент на валу барабана $M_{\scriptscriptstyle M}$ H · м, при подъёме груза

$$M_{_{\rm M}} = \frac{G \cdot v}{\omega_{_{\rm M}} \cdot 3_6}$$

$$M_{_{\rm M}} = \frac{22600 \cdot 0.133}{4.18 \cdot 0.97} = 741.33 \; \text{H} \cdot \text{M}$$

Вращающий момент механизма подъёма груза M_{ch} $H \cdot M$, приведённый к валу электродвигателя

$$M_{\rm CH} = \frac{M_{\rm M}}{i \cdot \eta_{\rm m}}$$

$$M_{CH} = \frac{741.33}{25 \cdot 0.96} = 19.94 \text{ H} \cdot \text{M}$$

Вращающий тормозной момент на валу барабана $M_{\scriptscriptstyle TM}$ $H \cdot M$, при спуске груза

$$\mathbf{M}_{\scriptscriptstyle \mathrm{TM}} = \mathbf{M}_{\scriptscriptstyle \mathrm{M}} \cdot \boldsymbol{\eta}_{\scriptscriptstyle \Pi}^2$$

$$M_{\scriptscriptstyle TM} = 741,33 \cdot 0,96^2 = 711.7 \; H \cdot M$$

Вращающий тормозной момент механизма опускания груза $M_{\scriptscriptstyle T}\,H\cdot M$, приведённый к валу электродвигателя

$$M_{\scriptscriptstyle \rm T} = \frac{M_{\scriptscriptstyle \rm TM}}{i} \, \eta_{\scriptscriptstyle \rm II}^2$$

$$M_{\text{\tiny T}} = \frac{711.7}{25} 0.96^2 = 26.23 \text{ H} \cdot \text{M}$$

Мощность на валу электродвигателя P_{pac} Вт, при подъёме груза

$$P_{pac} = M_{ch} \cdot \omega_{dB}$$

$$P_{pac} = 19.94 \cdot 104.5 = 2083.7 \; B_T$$

Момент инерции системы $J_{\text{сис}}$ кг · м² , «электродвигатель - механизм подъёма груза

$$J_{\text{CHC}} = J_{\text{дB}} + J_{\text{p}} + \frac{J_{6}}{i^{2}}$$

$$J_{\text{сис}} = 0.84 + 1.1 + \frac{77.5}{2.5^2} = 1.888 \text{ кг} \cdot \text{м}^2$$

Задача 5.

Определить время торможения системы «электродвигатель - рабочая машина», если электродвигатель останавливается за счёт сил сопротивления от $\omega_{\text{раб}}=153$ рад/с. до нуля. Электродвигатель: АИРФ132М4; $J_{\text{дв}}=0.027$ кг · м²; рабочая машина - железный сплошной цилиндр, ось вращения которого проходит через центр тяжести. Радиус цилиндра R=0.4 м; длина цилиндра l=0.6 м; плотность железа $\rho=7.88-10^3$ кг/м³. Коэффициент полезного действия и передаточное отношение редуктора $\eta_{\text{p}}=0.9$; i=35. Вращающий момент рабочей машины относительно своей оси $M_{\text{м}}=1323$ Н · м.

Решение:

Масса цилиндра $m_{\rm II}$, по формуле

$$m_{ ext{\tiny II}} = \mathbf{p} \cdot R^2 \cdot l \cdot
ho$$
 $m_{ ext{\tiny II}} = 3.14 \cdot 0.4^2 \cdot 0.6 \cdot 7.88 \cdot 10^3 = 2375$ кг

Момент инерции цилиндра J_c , кг-м², относительно своей оси

$$J_{\rm c} = m_{\rm II} \cdot \mathrm{p}^2 = m_{\rm II} \frac{R^2}{2}$$

$$J_{\rm c} = 2375 \frac{0.4^2}{2} = 190 \, \rm kr \cdot m^2$$

Момент инерции рабочей машины приведённый к валу электродвигателя

$$J_{\rm M} = \frac{J_{\rm c}}{i^2}$$

$$J_{\rm M} = \frac{190}{35^2} = 0.155 \, \rm Kr \cdot M^2$$

Момент инерции системы $J_{\text{сис}}$ кг · м², по формуле

$$J_{\text{CHC}} = J_{\text{AB}} + J_{\text{p}} + J_{\text{M}}$$

$$J_{\text{сист}} = 0.027 + 1.1 \cdot 0.027 + 0.155 = 0.2117 \text{ кг} \cdot \text{м}^2$$

Момент сопротивления рабочей машины M_{ch} $H \cdot m$, приведённый к валу электродвигателя

$$M_{\rm ch} = \frac{M_{\rm M}}{i \cdot \eta_{\rm 6}}$$

$$M_{CH} = \frac{1323}{35 \cdot 0.9} = 42 \text{ H} \cdot \text{M}$$

Время торможения $t_{\text{торм}}$ с, системы «электродвигатель-рабочая машина»

$$t_{\text{торм}} = J_{\text{сис}} \frac{\omega_{\text{раб}}}{M_{\text{c}}}$$

$$t_{\text{торм}} = 0.2117 \frac{153}{42} = 0.771 \text{ c}$$

Задача 6.

Рассчитать продолжительность пуска электропривода, состоящего из асинхронного двигателя с вентилятором методом площадей. Считать приведенный к валу двигателя момент инерции электропривода в 10 раз больше момента инерции двигателя. Механическая характеристика механизма описывается вентиляторной характеристикой с начальным моментом, составляющим 20% от номинального момента двигателя, номинальная скорость равна номинальной скорости двигателя, номинальный момент равен номинальному моменту двигателя.

Характеристики электродвигателя:

Тип – 4А112М4У3

Номинальная мощность $P_H = 5.5 \text{ кBT}$,

Номинальное скольжение $s_H = 5 \%$,

Коэффициент мощности $\cos \varphi = 0.86$,

Номинальный КПД $\eta_{\scriptscriptstyle H} = 85,5~\%$,

Кратность пускового момента $\mu_{\text{п}} = 2$,

Кратность критического момента $\mu_{\kappa} = 2,2,$

Кратность минимального момента $\mu_{min} = 1,6$,

Kратность пускового тока $K_i = 7$.

Решение:

Для расчета продолжительности пуска используем графоаналитический метод площадей.

Произведем расчет механической характеристики двигателя. Вычислим значения момента и частоты вращения в характерных точках характеристики:

Синхронная точка.

Скорость двигателя равна синхронной

$$n_1 = \frac{60f}{p},$$

где f — частота токов статора, p — число пар полюсов статора.

$$n_I = (60.50)/2 = 1500 \text{ мин}^{-1}.$$

Момент двигателя равен 0. *Номинальная точка*.

Номинальная частота вращения

$$n_{H} = n_{1}(1-s_{H})$$

где s_{H} — номинальное скольжение.

$$n_{H} = 1500 \cdot (1-0.05) = 1425 \text{ MUH}_{-1}.$$

Номинальный момент рассчитывается по формуле

$$M_{H} = 9.55 \frac{P_{H}}{n_{H}}$$

где $P_{\rm H}$ — номинальная мощность двигателя, $n_{\rm H}$ — номинальная частота вращения ротора.

$$M_H = 9,55 \cdot (5500/1425) = 36,9 \text{ H} \cdot \text{M}.$$

Критическая точка. критическое скольжение

$$s_{\kappa} = s_{\mu} \left(\mu_{\kappa} + \sqrt{\mu_{\kappa}^{2} - 1} \right),$$

$$s_{\kappa} = 0.05 \cdot (2.2 + \sqrt{2.2^{2} - 1}) = 0.21.$$

Критическая частота вращения

$$n_{\hat{e}}=n_{_1}ig(1-s_{\hat{e}}ig),$$
 $n_{_{
m K}}=1500\cdot(1\text{-}0,\!21)=1185$ мин $^{\text{-}1}.$

Критический момент

$$M_{\kappa} = \mu_{\kappa} M_{\kappa}$$

где μ_{κ} – кратность критического момента (из паспортных данных двигателя).

$$M_{\kappa} = 2,2.36,9 = 81,2 \text{ H} \cdot \text{M}.$$

Точка минимального момента.

Минимальный момент определяется по формуле

$$M_{\min} = \mu_{\min} M_{\mu}$$

где $\,\mu_{
m min}\,$ - кратность минимального момента (из паспортных данных).

$$M_{min} = 1.6.36.9 = 59 \text{ H} \cdot \text{M}.$$

Частота вращения в минимального точке приблизительно равна 20% от синхронной.

$$n_{min} = 0.2 \cdot 1500 = 500 \text{ мин}^{-1}.$$

Пусковая точка.

Частота вращения в пусковой точке равно 0. Момент рассчитывается по формуле

$$M_n = \mu_n M_{H}$$

где μ_n - кратность пускового момента (из паспортных данных).

$$M_{\pi} = 2,0.36,9 = 73,8 \text{ H}\cdot\text{M}.$$

Дополнительно к этим точкам необходимо рассчитать еще три, используя упрощенную формулу Клосса

$$M = \frac{2M_{\kappa}}{\frac{s}{s_{\kappa}} + \frac{s_{\kappa}}{s}}$$

Скольжение в первой точке возьмем приблизительно равным половине от номинального, во второй и третей точках приблизительно равномерно между номинальным и критическим.

$$s_1 = 0.025$$
; $s_2 = 0.1$; $s_3 = 0.15$;

Соответствующие им частоты вращения

$$n_1 = 1500 \cdot (1-0,025) = 1463 \text{ мин}^{-1}.$$

$$n_2 = 1500 \cdot (1-0,1) = 1350 \text{ мин}^{-1}.$$

 $n_3 = 1500 \cdot (1-0,15) = 1275 \text{ мин}^{-1}.$

Моменты в точках

$$\begin{split} M_1 &= (2\cdot81,2)/(0,025/0,21+0,21/0,025) = 18,9 \text{ H·м.} \\ M_2 &= (2\cdot81,2)/(0,1/0,21+0,21/0,1) = 62,5 \text{ H·м.} \\ M_3 &= (2\cdot81,2)/(0,15/0,21+0,21/0,15) = 77,3 \text{ H·м.} \end{split}$$

Данные расчетов сведем в таблицу

Таблица 7 Механическая характеристика двигателя

S	0	0,025	0,05	0,1	0,15	0,21	0,8	1
n, мин ⁻¹	1500	1463	1425	1350	1275	1185	500	0
М, Н·м	0	18,9	36,9	62,5	77,3	81,2	59	73,8

Рассчитаем механическую характеристику производственного механизма, которая является вентилляторной и может быть рассчитана по формуле Бланка

$$M = M_{c.0.} + M_{c.n.} \left(\frac{n}{n_{_{\rm H}}}\right)^2,$$

где $M_{\text{с.о.}}$ – начальный момент сопротивления, $M_{\text{с.н.}}$, $n_{\text{н}}$ – номинальные момент сопротивления и частота вращения. Согласно заданию

$$M_{c.0.} = 0.2 M_H = 0.2.36.9 = 7.4 H\cdot M,$$

 $M_{c.H.} = 0.8 M_H = 0.8.36.9 = 29.5 H\cdot M,$

где $M_{\scriptscriptstyle H}$ – номинальный момент двигателя.

Номинальные частоты механизма и двигателя совпадают. Результаты расчета характеристики механизма сведем в таблицу 2.

Таблица 8 Механическая характеристика производственного механизма

n, MuH^{-1}	0	300	600	900	1200	1500
$\hat{I}_{\tilde{n}}, \hat{I} \cdot \hat{i}$	7,4	8,6	12,1	18	26,3	37,1

Для нахождения времени пуска электропривода на одном чертеже строим механическую характеристику двигателя $M_{\rm g}(n)$ и механическую характеристику производственного механизма $M_{\rm c}(n)$ (рисунок 10).

Находим зависимость динамического момента от частоты $M_{\text{дин}}(n) = M_{\text{д}}(n) - M_{\text{c}}(n)$ как графическую разность характеристик.

Аппроксимируем полученную характеристику ступенчатой кривой. Для достижения необходимой точности число ступеней должно быть не менее 5.

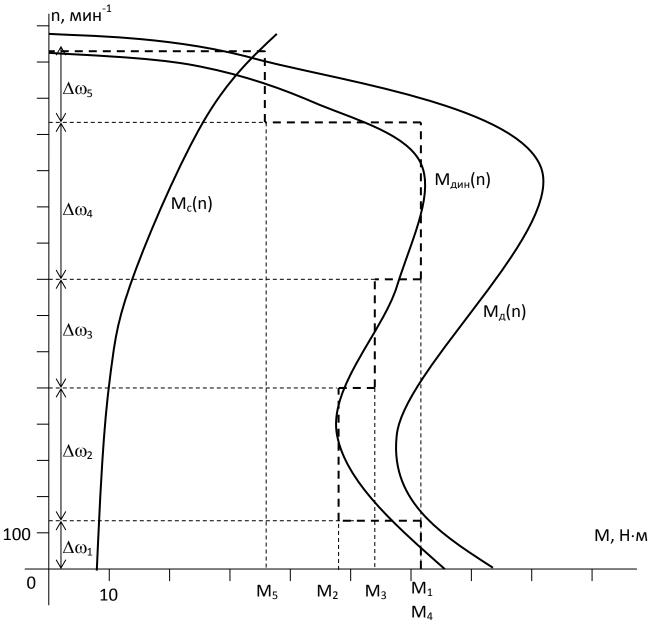


Рисунок 10. Нахождение времени пуска электропривода

Согласно уравнению движения электропривода, заменив бесконечно малые приращения конечными, находим время разгона на каждом вертикальном участке по формуле

$$\Delta t_i = J \frac{\Delta \omega_i}{M_{\partial u H i}} = J \frac{\Delta n_i}{9,55 M_{\partial u H i}}$$

где J – суммарный приведенный момент инерции электропривода. Согласно заданию

$$J=10 \cdot J_{\pi} = 10 \cdot 1,66 \cdot 10^{-2} = 16,6 \cdot 10^{-2} \text{ kg} \cdot \text{m}^2$$

 $J_{\scriptscriptstyle \rm I\!\!I}$ – момент инерции двигателя.

 $\Delta\omega_{\rm i}$ – изменение скорости на i-том участке,

 $M_{\text{лині}}$ — динамический момент на *i*-том участке.

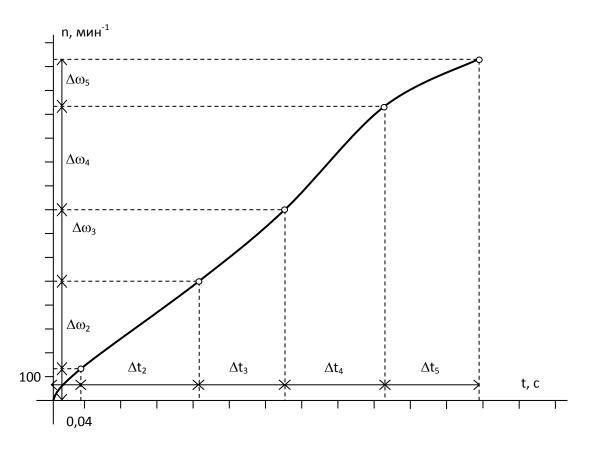


Рисунок 11. Разгонная кривая электропривода

$$\Delta t_1 = 0.166 \cdot 130/(9.55 \cdot 62) = 0.036 \text{ c},$$

 $\Delta t_1 = 0.166 \cdot 366/(9.55 \cdot 48) = 0.132 \text{ c},$
 $\Delta t_1 = 0.166 \cdot 300/(9.55 \cdot 54) = 0.096 \text{ c},$

$$\Delta t_1 = 0.166.430/(9.55.62) = 0.120 \text{ c},$$

 $\Delta t_1 = 0.166.200/(9.55.36) = 0.096 \text{ c}.$

Общее время разгона электропривода

$$t_{pas} = \sum \Delta t_i$$

$$t_{pa3} = 0.036 + 0.132 + 0.096 + 0.120 + 0.096 = 0.48 c.$$

Строим разгонную кривую, показывающую изменение скорости вращения двигателя во время пуска (рисунок 11).

3.2 Контрольные задания

Задача 1.

Рассчитать продолжительность пуска электропривода, состоящего из асинхронного двигателя с вентилятором методом площадей. Считать приведенный к валу двигателя момент инерции электропривода в 10 раз больше момента инерции двигателя. Механическая характеристика механизма описывается вентиляторной характеристикой с начальным моментом, составляющим 10% от номинального момента двигателя, номинальная скорость равна номинальной скорости двигателя, номинальный момент равен номинальному моменту двигателя.

Параметры двигателя приведены в таблице.

Таблица 9

Вариант	Типоразмер двигателя	Мощность, кВт	Скольжение, %	КПД, %	фsоо	$\mu_{\rm \scriptscriptstyle K}\!\!=\!\!M_{\rm \scriptscriptstyle K}/M_{\rm \scriptscriptstyle H}$	$\mu_{\rm u}{=}M_{\rm n}/M_{_{\rm H}}$	$\mu_{\rm min}{=}M_{\rm min}/M_{_{\rm H}}$	$\rm K_{I}\!\!=\!\!I_{I\!\!\!/}I_{H}$	Момент инерции Ј, кг м ² .10 ⁻²	Macca,
1	2	3	4	5	6	7	8	9	10	11	12
1	4А63В4У3	0,37	9	68	0,69	2,2	2	1,2	5	0,11	6
2	4А71А4У3	0,55	8,7	70,5	0,70	2,2	2	1,6	4,5	0,13	8,1
3	4А71В4У3	0,75	8,7	72	0,73	2,2	2	1,6	4,5	0,14	9,4
4	4А80А4У3	1,1	6,7	75	0,81	2,2	2	1,6	5	0,32	11,9
5	4А80В4У3	1,5	6,7	77	0,83	2,2	2	1,6	5	0,33	13,8

Продолжение таблицы 9

Вариант	Типоразмер двигателя	Мощность, кВт	Скольжение, %	КПД, %	oso	$\mu_{\scriptscriptstyle K}{=}M_{\scriptscriptstyle K}/M_{\scriptscriptstyle H}$	$\mu_{\Pi}{=}M_{\Pi}/M_{H}$	$\mu_{min}{=}M_{min}/M_{_{\rm H}}$	$ m K_I \!\!=\!\! I_n/I_H$	Момент инерции J, кг м ² ·10 ⁻²	Маα
1	2	3	4	5	6	7	8	9	10	11	12
6	4A90L4У3	2,2	5,4	80	0,83	2,2	2	1,6	6	0,56	18,1
7	4A100S4У3	3	5,3	82	0,83	2,2	2	1,6	6,5	0,87	23
8	4A100L4У3	4	5,3	84	0,84	2,2	2	1,6	6	1,12	29,2
9	4А112М4У3	5,5	5	85,5	0,86	2,2	2	1,6	7	1,66	38,5
10	4A132S4У3	7,5	3	87,5	0,86	2,2	2	1,6	7,5	2,83	53,5
11	4А132М4У3	11	2,8	87,5	0,87	2,2	2	1,6	7,5	4	66,3

Задача 2.

Имеется электропривод (рисунок 12), содержащий электродвигатель (ЭД), редуктор (РД) и рабочий орган (РО). На вал рабочего органа действует статический реактивный момент ($M_{\rm po}$). Редуктор имеет передаточное отношение q и к.п.д. η .

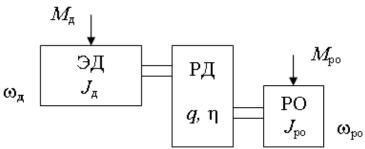


Рисунок 12. Кинематическая схема электропривода.

Определить: с какой скоростью ($\omega_{_{\rm I}}$) должен вращаться электродвигатель и какой при этом он должен развивать момент ($M_{_{\rm I}}$) и мощность (P), чтобы вращать рабочий орган со скоростью $\omega_{_{\rm PO}}$.

Исходные данные представлены в таблице 10.

Таблица 10

Вариант	М ро, Н∙м	ω ро, рад/с	q	η
1	2	3	4	5
1	1,0	40	10	0,9
2	1,2	38	12	0,9
3	1,4	36	14	0,9
4	1,6	34	16	0,9

Продолжение таблицы 10

			1 ' '	·
5	1,8	32	18	0,9
6	2,0	30	20	0,8
7	2,2	28	22	0,8
8	2,4	26	24	0,8
9	2,6	24	26	0,8
10	2,8	22	28	0,8
11	3,0	20	30	0,7
12	3,2	18	32	0,7
13	3,4	16	24	0,7
14	3,6	14	36	0,7
15	3,8	12	38	0,7
16	3,8	10	40	0,6
17	4,0	8	42	0,6
18	4,0	6	44	0,6

Задача 3.

Имеется электропривод (рис. 13), содержащий электродвигатель (ЭД) и редуктор (РД) с передаточным коэффициентом q и к.п.д. η . На выходном валу редуктора укреплен барабан (Б) диаметром Д $_{6}$, на который намотан трос. К тросу подвешен груз массой m.

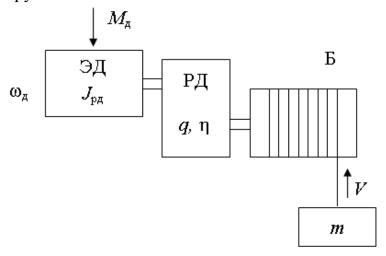


Рисунок 13. Кинематическая схема электропривода

Определить: с какой скоростью ($\omega_{_{\rm J}}$) должен вращаться электродвигатель и какой момент ($M_{_{\rm J}}$) и мощность при этом он должен развивать, чтобы равномерно поднимать груз со скоростью V.

Исходные данные представлены в таблице 1.

Таблица 11

Вариант	q	η	Дб, м	V, м/c	m, кг
1	10	0,9	0,10	12,0	10
2	12	0,9	0,12	11,5	10
3	14	0,9	0,14	11,0	10
4	16	0,9	0,16	10,5	10
5	18	0,9	0,18	10,0	10
6	20	0,8	0,20	9,5	20
7	22	0,8	0,22	9,0	20
8	24	0,8	0,24	8,5	20
9	26	0,8	0,26	8,0	20
10	28	0,8	0,28	7,5	20
11	30	0,7	0,30	7,0	30
12	32	0,7	0,32	6,5	30
13	24	0,7	0,34	6,0	30
14	36	0,7	0,36	5,5	30
15	38	0,7	0,38	5,0	30
16	40	0,6	0,40	4,5	35
17	42	0,6	0,42	4,0	35
18	44	0,6	0,44	3,5	35

Задача 4.

Имеется электропривод (рисунок 14), содержащий электродвигатель (ЭД) с моментом инерции ротора $J_{\rm pд}$, редуктор (РД), имеющий передаточное отношение q и к.п.д. η , и рабочий орган (РО). Момент инерции вращающихся частей рабочего органа $J_{\rm po}$. На вал рабочего органа действует статический реактивный момент ($M_{\rm po}$).

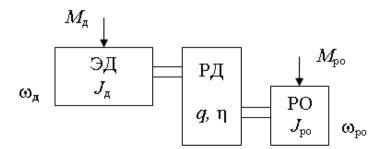


Рисунок 14. Кинематическая схема электропривода

Определить: какой потребуется момент двигателя для разгона рабочего органа до скорости ω_{po} за время t_0 с постоянным ускорением, и какую максимальную мощность при этом должен развить двигатель.

Исходные данные в таблице 1.

Таблица 12

Вариант	<i>М</i> _{ро} , Н∙м	ω _{ро} , рад/с	q	η	$J_{ m pд}, \ { m Kr} \cdot { m M}^2$	J_{po} , кг \cdot м 2	t 0, c
1	1,0	40	10	0,9	0,001	0,1	0,5
2	1,2	38	12	0,9	0,001	0,1	0,5
3	1,4	36	14	0,9	0,002	0,2	0,6
4	1,6	34	16	0,9	0,002	0,2	0,6
5	1,8	32	18	0,9	0,003	0,3	0,7
6	2,0	30	20	0,8	0,003	0,3	0,7
7	2,2	28	22	0,8	0,004	0,4	0,8
8	2,4	26	24	0,8	0,004	0,4	0,8
9	2,6	24	26	0,8	0,005	0,5	0,9
10	2,8	22	28	0,8	0,005	0,5	0,9
11	3,0	20	30	0,7	0,006	0,6	1,0
12	3,2	18	32	0,7	0,006	0,6	1,0
13	3,4	16	24	0,7	0,007	0,7	1,1
14	3,6	14	36	0,7	0,007	0,7	1,1
15	3,8	12	38	0,7	0,008	0,8	1,2
16	3,8	10	40	0,6	0,008	0,8	1,2
17	4,0	8	42	0,6	0,006	0,6	1,0
18	4,0	6	44	0,6	0,006	0,6	1,0

Задача 5.

Имеется электропривод (рисунок 15), содержащий электродвигатель (ЭД) с моментом инерции ротора $J_{\rm pд}$ и редуктор (РД) с передаточным коэффициентом q и к.п.д. η . На выходном валу редуктора укреплен барабан (Б) диаметром Д $_{\rm f}$ и моментом инерции $J_{\rm po}$, на который намотан трос. К тросу подвешен груз массой m.

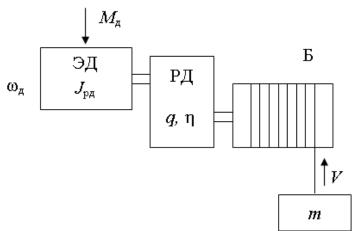


Рисунок 15. Кинематическая схема электропривода

Определить: какой потребуется момент двигателя для того, чтобы поднять груз, равномерно увеличивая скорость подъема, за время t_0 на высоту h . Исходные данные в таблице 1.

Таблица 13

								олица 15
Вариант	q	η	Д _б , м	m, кг	$J_{ m pд}, \ { m K} { m r} \cdot { m M}^2$	J_{po} , $\kappa \Gamma \cdot M^2$	t 0, c	h , M
1	10	0,9	0,10	10	0,001	0,1	0,5	0,5
2	12	0,9	0,12	10	0,001	0,1	0,5	0,5
3	14	0,9	0,14	10	0,002	0,2	0,6	0,6
4	16	0,9	0,16	10	0,002	0,2	0,6	0,6
5	18	0,9	0,18	10	0,003	0,3	0,7	0,7
6	20	0,8	0,20	20	0,003	0,3	0,7	0,7
7	22	0,8	0,22	20	0,004	0,4	0,8	0,8
8	24	0,8	0,24	20	0,004	0,4	0,8	0,8
9	26	0,8	0,26	20	0,005	0,5	0,9	0,9
10	28	0,8	0,28	20	0,005	0,5	0,9	0,9
11	30	0,7	0,30	30	0,006	0,6	1,0	1,0
12	32	0,7	0,32	30	0,006	0,6	1,0	1,0
13	24	0,7	0,34	30	0,007	0,7	1,1	1,1
14	36	0,7	0,36	30	0,007	0,7	1,1	1,1
15	38	0,7	0,38	30	0,008	0,8	1,2	1,2
16	40	0,6	0,40	35	0,008	0,8	1,2	1,2
17	42	0,6	0,42	35	0,006	0,6	1,0	1,4
18	44	0,6	0,44	35	0,006	0,6	1,0	1,4

4. Режимы работы, выбор электродвигателя

4.1 Примеры решения задач

Задача 1.

Насос типа ЯН3-3/25 с номинальной производительностью $Q_H = 12 \text{ м}^3/\text{ч}$ и частотой вращения $n_H = 1450$ об/мин устанавливается на магистрали, где он будет работать с расчетной производительностью $Q = 6 \text{ м}^3/\text{ч}$ и расчетным напором H = 18,5 м. Удельный вес жидкости $g = 1,3 \text{ кгс/дм}^3$. По каталожным данным при $Q = 6 \text{ м}^3/\text{ч}$ КПД насоса $h_H = 0,15$. Определить мощность на валу двигателя.

Решение:

Определим расчетную производительность Q (дм³/ч),

$$Q = 6 * 1000 / 3600 = 1,67 (дм3/ч)$$

Мощность насоса P_c найдём с помощью приведённой формулы, учитывая, что промежуточные передачи отсутствуют ($h_{\scriptscriptstyle H} = 1$)

$$P_c = 1.3 * 1.67 * 18.5 / (102 * 0.15) = 2.6 \text{ kBt}.$$

По каталожным данным двигателей единой серии находим, что следует выбрать двигатель топа 4A100S4Y3; $P_{\rm H}=3~{\rm kBT};~n_{\rm H}=1420~{\rm muh}^{-1},$ так как его мощность близка к требуемой $P_{\rm c}$ и выполняется условие $P_{\rm H}>P_{\rm c}$.

Задача 2.

Асинхронный электродвигатель рассчитан для работы в повторно-кратковременном режиме с $\Pi B=25\%$ при мощности $P_{\rm H25}=10$ кВт. Определить мощность, которую электродвигатель может развить, не перегреваясь сверх нормы, при относительной продолжительности включения $\Pi B=60\%$.

Решение:

$$P_{\rm ee} = P_{\rm exp} \sqrt{\frac{MB_{\rm ee}}{MB_{\rm ee}}} = 10\sqrt{\frac{25}{60}} = 6.4$$
 KBT,

т.е. при ПВ=60% мощность электродвигателя составляет 6,4 кВт.

Задача 3.

Нагрузочная диаграмма механизма задана повторяющимся циклом в соответствии с рисунком 16. Для привода механизма выбрать асинхронный двигатель с короткозамкнутым ротором с синхронной частотой 1500 мин-1. Выбор провести методом эквивалентной мощности, проверить выбранный электродвигатель методом средних потерь. Выполнить проверку на перегрузочную способность.

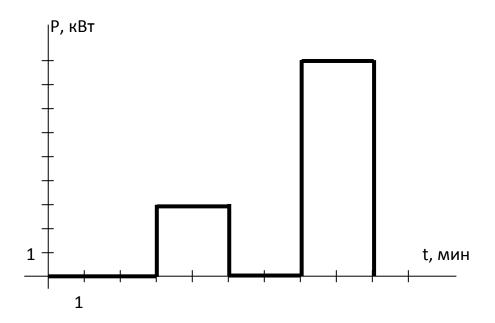


Рисунок 16. Нагрузочная диаграмма электропривода

Решение:

Т. к. в дальнейшем диаграмма повторяется, расчеты будем проводить на одном ее цикле, изображенном на рисунке 3.

Используя метод эквивалентной мощности, проведем расчет необходимой мощности привода. Режим работы привода — S3 — повторнократковременный с продолжительностью включения

$$\Pi B\% = \frac{t_p}{t_u} 100\%$$

$$\Pi B\% = (4/9) \cdot 100\% = 44\%$$

где t_p = 2+2 = 4 мин — время работы двигателя за цикл нагрузочной диаграммы,

$$t_{\mu} = 3 + 2 + 2 + 2 = 9$$
 мин – длительность цикла.

Эквивалентная мощность нагрузки

$$P_{y} = \sqrt{\frac{\sum P_{i}t_{i}}{\sum t_{i}}}$$

$$P_{9} = \sqrt{(0^{2}\cdot3+9^{2}\cdot2+0^{2}\cdot2+3^{2}\cdot2)/(3+2+2+2)} = 4,5 \text{ кВт}$$

Для привода механизма будем использовать двигатель, предназначенный заводом изготовителем для длительного режима работы. Поэтому его стандарт-

ной ΠB_{cr} % считаем 100%. Мощность выбираемого двигателя должна удовлетворять условию

$$P_{\scriptscriptstyle H} \ge P_{\scriptscriptstyle \Im} \sqrt{\frac{\Pi B^{\circ}\!\!/_{\scriptscriptstyle 0}}{\Pi B_{\scriptscriptstyle CM}^{\circ}}},$$

$$P_{H} \ge 4.5 \cdot \sqrt{44/100} = 2.9 \text{ kBT}.$$

Выбираем двигатель 4A100S4У3 (приложение 1)

С параметрами –

Номинальная мощность $P_{H} = 3 \text{ кВт}$,

Номинальное скольжение $s_{\scriptscriptstyle H} = 5,3$ %,

Коэффициент мощности $\cos \varphi = 0.82$,

Номинальный КПД $\eta_H = 83 \%$,

Кратность пускового момента $\mu_{\text{п}}=2$,

Кратность критического момента $\mu_{\kappa} = 2,2,$

Кратность минимального момента $\mu_{min} = 1,6,$

Кратность пускового тока $K_i = 6.5$.

Проверим выбранный двигатель на перегрузочную способность. Максимальная мощность по нагрузочной диаграмме $P_{i.max} = 9 \text{ кBt}$.

Проверим выполнение условия перегрузочной способности

$$\frac{M_{i,\max}}{M_{i,\max}} < \mu_{\kappa} - 0.25$$

Т.к. скорость вращения при работе асинхронного двигателя меняется незначительно, отношение моментов можно заменить отношением мощностей. Тогда условие перепишется в виде

$$\frac{P_{i.\max}}{P_{_{\scriptscriptstyle H}}} < \mu_{_{\scriptscriptstyle K}} - 0.25$$

$$9/3 = 3 > 2,2 - 0,25 = 1,95$$

Для двигателя 4A100L4У3 мощностью 4 кВт условие перегрузочной способности

$$9/4 = 2,25 > 2,2 - 0,25 = 1,95$$

Условие также не выполняется.

Выбираем двигатель— 4А112М4У3

С параметрами –

Номинальная мощность $P_{\scriptscriptstyle H} = 5,5~{\rm kBt}$,

Номинальное скольжение $s_{\rm H}=5~\%,$ Коэффициент мощности $\cos \varphi=0.86,$ Номинальный КПД $\eta_{\rm H}=85.5~\%,$ Кратность пускового момента $\mu_{\rm H}=2,$ Кратность критического момента $\mu_{\rm K}=2.2,$ Кратность минимального момента $\mu_{\rm min}=1.6,$ Кратность пускового тока $K_{\rm i}=7.$ Для которого условие перегрузочной способности

$$9/5,5 = 1,64 < 2,2 - 0,25 = 1,95$$

выполняется.

Методы эквивалентных величин не точно учитывают постоянные потери в двигателе, поэтому проверим двигатель по нагреву более точным методом средних потерь. Для этого найдем номинальные потери двигателя по формуле

$$\Delta P_{\scriptscriptstyle H} = P_{\scriptscriptstyle H} \frac{1 - \eta_{\scriptscriptstyle H}}{\eta_{\scriptscriptstyle H}}$$

$$\Delta P_{\rm H} = 5500 \cdot (1-0.855) / 0.855 = 1127 \ B_{\rm T}.$$

Для асинхронных двигателей базового закрытого исполнения отношение постоянных и переменных потерь

$$\frac{\Delta P_c}{\Delta P_{v,H}} \approx 0.5$$

поэтому треть номинальных потерь составляют постоянные потери, а две трети – переменные потери.

$$\Delta P_c = \Delta P_H/3 = 1127/3 = 376 \text{ BT},$$

$$\Delta P_{\rm v,h} = 2 {\cdot} \Delta P_{\rm h} / 3 = 2 {\cdot} 1127 / 3 = 751 \ B_{\rm T}.$$

По формуле

$$\Delta P_i = \Delta P_c + \Delta P_{v.h} \left(\frac{P_i}{P_{_H}}\right)^2$$

найдем потери на каждом участке нагрузочной диаграммы

$$\Delta P_1 = 0 \text{ BT},$$

$$\Delta P_2 = 376 + 751 \cdot (9/5,5)^2 = 2387 \text{ Bt},$$

$$\Delta P_3 = 0 \text{ Bt},$$

$$\Delta P_4 = 376 + 751 \cdot (2/5,5)^2 = 475 \text{ Bt}.$$

Средние потери за цикл

$$\Delta P_{cp} = \frac{\sum \Delta P_i t_i}{\sum t_i}$$

$$\Delta P_{cp} = (2387+475)/(3+2+2+2) = 318 \text{ BT}$$

Тепловой режим двигателя не будет нарушен, если средние потери не превысят номинальных потерь двигателя, т.е.

$$\Delta P_{cp} = 318 \text{ BT} < \Delta P_{H} = 1127 \text{ BT}.$$

Условие выполняется, поэтому тепловой режим работы двигателя не будет нарушен.

Задача 4.

Выбрать приводной асинхронный электродвигатель с синхронной частотой 1500 мин⁻¹ для механизма работающего в кратковременном режиме. Время работы 6 мин, нагрузка на валу двигателя 3 кВт.

Решение:

В кратковременном режиме температура двигателя не успевает достигнуть установившихся значений, поэтому для привода можно использовать двигатель номинальной мощностью меньше, чем мощность на валу на участке работы.

Предварительно выбираем двигатель 4А80В4У3

С параметрами

Номинальная мощность $P_{H} = 1,5 \text{ кВт}$,

Номинальное скольжение $s_H = 6.7 \%$,

Коэффициент мощности $\cos \varphi = 0.83$,

Номинальный КПД $\eta_H = 77 \%$,

Кратность пускового момента $\mu_{\Pi} = 2$,

Кратность критического момента $\mu_{\kappa} = 2,2,$

Кратность минимального момента $\mu_{min} = 1,6,$

Кратность пускового тока $K_i = 5$.

Постоянную времени нагрева в минутах можно найти по эмпирической формуле

$$T_{\text{\tiny HAZP}} = 6 \frac{m \cdot \theta_{\text{\tiny H}} \cdot \eta_{\text{\tiny H}}}{P_{\text{\tiny H}} (1 - \eta_{\text{\tiny H}})}$$

$$T_{\text{\tiny HAPP}} = 6 \frac{21,3 \cdot 80 \cdot 0,77}{1500(1-0,77)} = 10,9$$

где т- масса электродвигателя, кг;

 θ_{i} - нормированное превышение температуры двигателя при номинальной нагрузке при измерении методом сопротивления, град;

 η_{H} - номинальный КПД двигателя;

 $P_{\scriptscriptstyle H}$ -номинальная мощность двигателя, $B_{\scriptscriptstyle T}$.

Выбранный электродвигатель должен удовлетворять условию

$$P_{n} \ge P_{\Im} \sqrt{\frac{1 - e^{-\frac{t_{p}}{T_{n}}}}{1 - e^{-\frac{t_{p.cm.}}{T_{n}}}}}$$

где P_{9} — эквивалентная мощность нагрузки на рабочем участке. $t_{\text{p.ст.}}$ - стандартное время работы двигателя.

Если условие выполняется со значительным запасом, это говорит о завышенной мощности двигателя.

Выбираемый двигатель предназначен заводом изготовителем для режима S1, поэтому его стандартное время работы $t_{p.c.}=\infty$ и условие запишется в виде

$$P_{\mu} \ge P_{\Im} \sqrt{1 - e^{-\frac{t_p}{T_n}}}$$

$$1.5 \le 3\sqrt{1-e^{\frac{6}{10.9}}} = 1.99$$

Условие не выполняется, значит тепловой режим электродвигателя будет нарушен.

Выбираем двигатель на одну ступень большей мощности

Предварительно выбираем двигатель 4A90L4У3

С параметрами –

Номинальная мощность $P_{\scriptscriptstyle H} = 2,2~{\rm kBr}$,

Номинальное скольжение $s_{\scriptscriptstyle H}=5,4$ %,

Коэффициент мощности $\cos \varphi = 0.83$,

Номинальный КПД $\eta_{\rm H}=80$ %, Кратность пускового момента $\mu_{\rm H}=2$, Кратность критического момента $\mu_{\rm K}=2,2$, Кратность минимального момента $\mu_{\rm min}=1,6$, Кратность пускового тока $K_{\rm i}=6$. Для него условие по нагреву

$$T_{\text{\tiny HAZP}} = 6 \frac{30 \cdot 80 \cdot 0.8}{2200(1 - 0.8)} = 10.9_{\text{MUH.}}$$

$$2.2 \ge 3\sqrt{1 - e^{\frac{-6}{10.9}}} = 1.99$$

выполняется.

Проверим выбранный двигатель на перегрузочную способность. Максимальная мощность во время работы P_{max} =3 кВт.

Условие перегрузочной способности

$$\frac{M_{i.\text{max}}}{M_{ii}} < \mu_{\kappa} - 0.25$$

Т.к. скорость вращения при работе асинхронного двигателя меняется незначительно, отношение моментов можно заменить отношением мощностей. Тогда условие перепишется в виде

$$\frac{P_{i.\max}}{P_{\mu}} < \mu_{\kappa} - 0.25$$

$$3/2,2=1,37 \le 2.2-0.25=1.95$$

Условие выполняется, двигатель выбран правильно.

4.2 Задачи для самостоятельного решения

Задача 1.

Найти мощность привода скребкового транспортера длиной 10 м, с расстоянием между скребками 0.5 м и КПД передачи 0.93. Объем материала перед скребком 0.025 м³; насыпная плотность 450 кг/м³; скорость движения 0.4 м/с; коэффициент сопротивления движению 2. Выбрать электродвигатель и автоматический выключатель для защиты электродвигателя.

Задача 2.

Рассчитать мощность привода, работающего в режиме 47Hм (10мин), 65Hм (5 мин) и 23Hм (12 мин) при частоте вращения 140 c^{-1} . Выбрать электродвигатель, кабель для подключения и способ его монтажа.

Задача 3.

Рассчитать мощность привода вентилятора с расчетным воздухообменом $15000~{\rm m}^3/{\rm ч}$, давлением 340 Па, КПД вентилятора 0,55 и КПД передачи - 0,95. Изобразить силовую часть схемы 3-х ступенчатого регулирования производительности вентилятора.

Задача 4.

Определить мощность и выбрать электродвигатель привода молочного насоса с номинальной производительностью по молоку 15 м 3 /ч и напором $2 \cdot 10^5$ Па. Известно, что КПД насоса в длительном режиме работы равен 0,7.

Задача 5.

Выбрать электродвигатель для привода пресса, если удельные затраты энергии на прессование A=7,5кВт·ч/кг, КПД пресса - 0,9 и КПД ременной передачи - 0,95. Выбрать магнитный пускатель для дистанционного управления электродвигателем привода пресса.

Задача 6.

Рассчитать мощность электродвигателя привода подъёмника для подъема груза массой 1 т с помощью крюка массой 50 кг и скорости подъема груза 10 м/мин. КПД передачи равен 0,85, режим работы t_p =20 c, $t_{\text{паузы}}$ = 45 c. Определить сечение, тип и способ прокладки кабеля к электродвигателю.

Задача 7.

Определить мощность привода нории, если коэффициент заполнения ковшей - 0.8; насыпная плотность материала - 650 кг/м³; скорость движения ковшей - 2 м/с; вместимость ковша - 0.01 м³; расстояние между ковшами - 0.5 м; высота нории - 15 м; КПД передачи - 0.83.

Задача 8.

Выбрать 4-х полюсный электродвигатель для привода поршневого компрессора производительностью 1 ${\rm m}^3/{\rm muh}$ и давлением 1 атм.

Задача 9.

Рассчитать мощность привода мобильного транспортного средства при тяговом сопротивлении плуга 800 H, сопротивлении от волочения троса по почве 95H, скорости движения 4м/с, КПД передачи 0,89 и КПД транспортного средства 0,8. Выбрать электродвигатель серии 4A и разработать схему реверсивного управления с двух мест электропривода мобильного транспортного средства с кабельным питанием от сети 380/220 B.

Задача 10.

Рассчитать мощность и выбрать электродвигатель для привода молочного насоса с подачей 60 м 3 /ч, глубиной вакуума $5,3\cdot10^4$ Па, если КПД насоса - 0,6 и КПД передачи - 0,94.

Задача 11.

Определить значения потребной мощности вентилятора Ц4-70 № 7 при производительности Q=5000 м³/ч, полном давлении H=1275 Па, частоте вращения n=1456 об/мин, КПД вентилятора 0,78 и КПД передачи 1. Выбрать асинхронный электродвигатель с короткозамкнутым ротором, принимая коэффициент K_{3an} = 1,1.

Задача 12.

Рассчитать мощность и подобрать электродвигатель шнека длиной 5м линии загрузки комбикормов производительностью 10 кг/с, высотой подъема 4м с коэффициентом сопротивления - 2,4 и общим КПД 0,8, если ПВ=60%. Выбрать кабель для подключения шкафа управления электродвигателем шнека к распределительному шкафу.

Задача 13.

Рассчитать мощность привода скребкового транспортера длиной 18 м с расстоянием между скребками 0,5 м и КПД передачи 0,93. Материал объемом перед скребком $0,025~\text{m}^3$ с насыпной плотностью $450~\text{кг/m}^3$ движется со скоростью 0,4~m/c и коэффициентом сопротивления 2.

Задача 14.

Выбрать погружной насос, если статический уровень воды в скважине 70 м, динамический - 90 м, геодезический напор равен 85 м и потери напора в напорном трубопроводе равны 11 м.

Задача 15.

Рассчитать мощность привода шнека производительностью 15т/ч, с коэффициентом сопротивления перемещению 1,85 при проекциях транспортерагоризонтальная 10м, вертикальная 5м и общем КПД 0,75.

Задача 16.

Рассчитать мощность привода при моментах сопротивлений -47, 65 и 23 Нм, действующих соответственно в течение 10, 5 и 12 мин, и частоте вращения вала машины - $140 \, \mathrm{c}^{-1}$.

Задача 17.

Рассчитать мощность, необходимую на привод вентилятора, если требуемый воздухообмен составляет $15000 \text{ м}^3/\text{ч}$; расчетное давление 340 Па; КПД вентилятора - 0,55; КПД передачи - 0,95. Изобразить схему 3-х ступенчатого управления электроприводом вентилятора.

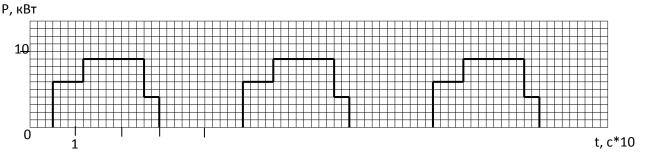
Задача 18.

Рассчитать мощность электродвигателя привода подъёмника для подъема груза массой 1 т с помощью крюка массой 50 кг и скорости подъема груза 10 м/мин. КПД передачи равен 0,8, режим работы t_p =30 c, $t_{\text{паузы}}$ = 40 c. Определить сечение, тип и способ прокладки кабеля к электродвигателю.

Задача 19.

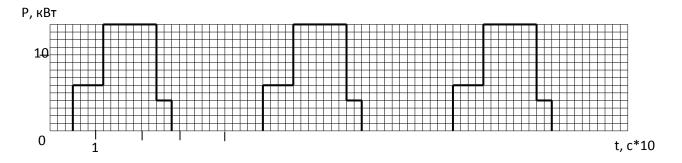
Найти мощность привода скребкового транспортера длиной 10 м, с расстоянием между скребками 0,5 м и КПД передачи 0,93. Объем материала перед скребком 0,025 м³; насыпная плотность 450 кг/м³; скорость движения 0,4 м/с; коэффициент сопротивления движению 2. Выбрать электродвигатель и автоматический выключатель для защиты электродвигателя.

Задача 20.

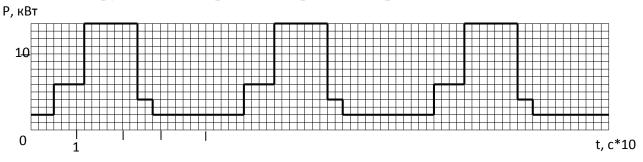

Определить мощность и выбрать электродвигатель привода молочного насоса с номинальной производительностью по молоку 15 м 3 /ч и напором $2 \cdot 10^5$ Па. Известно, что КПД насоса в длительном режиме работы равен 0,7.

Задача 21.

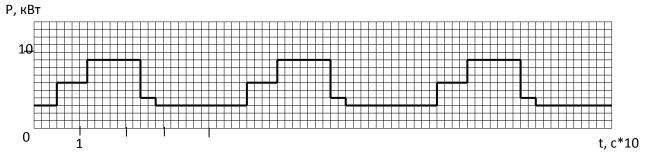
Рассчитать мощность, необходимую на привод вентилятора, если требуемый воздухообмен составляет $15000 \text{ м}^3/\text{ч}$; расчетное давление 340 Па; КПД вентилятора - 0,55; КПД передачи - 0,95.


Задача 22.

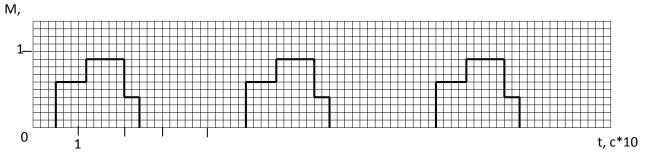
По нагрузочной диаграмме выбрать асинхронный двигатель.


Задача 23.

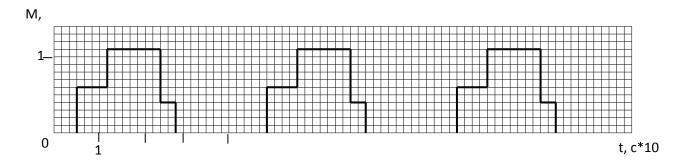
По нагрузочной диаграмме выбрать двигатель постоянного тока.


Задача 24.

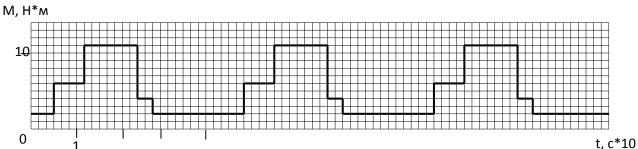
По нагрузочной диаграмме выбрать асинхронный двигатель.


Задача 25.

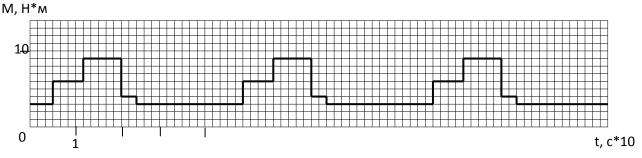
По нагрузочной диаграмме выбрать двигатель постоянного тока.


Задача 26.

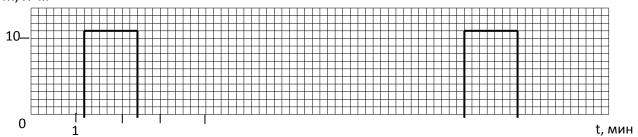
По нагрузочной диаграмме выбрать асинхронный двигатель.


Задача 27.

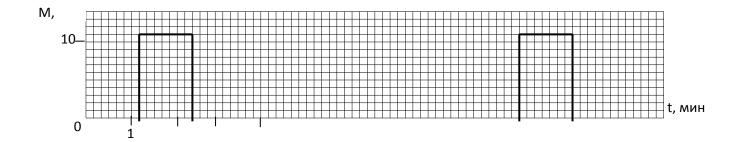
По нагрузочной диаграмме выбрать двигатель постоянного тока.


Задача 28.

По нагрузочной диаграмме выбрать асинхронный двигатель.


Задача 29.

По нагрузочной диаграмме выбрать двигатель постоянного тока.


Задача 30.

По нагрузочной диаграмме выбрать асинхронный двигатель для кратковременного режима работы. Считать его постоянную времени нагрева 40 мин. м, н*м

Задача 31.

По нагрузочной диаграмме выбрать двигатель постоянного тока для кратковременного режима работы. Считать его постоянную времени нагрева 40 мин.

4.3 Контрольные задания

Задача 1.

Для вариантов задачи данные содержатся в таблице 14, где указаны мощность и время участков нагрузочной диаграммы. Необходимо выбрать асинхронный двигатель с синхронной частотой вращения $n=1500~{\rm Muh}^{-1}$, если $T_{\rm окр}{=}25^0$. Задачу решить методом эквивалентной мощности, проверку выбранного двигателя провести методом средних потерь и осуществить проверку двигателя на перегрузочную способность

Таблица 14

	ъ	ъ	ъ	ъ	ъ	ъ						
Ba-	$P_{1,}$	Р _{2,} кВт	P _{3,}	$P_{4,}$	P _{5,}	P ₆ ,	$t_{1,c}$	t ₂ , c	t _{3,} c	t ₄ , c	t ₅ , c	t ₆ , c
риант	кВт	KDT	кВт	кВт	кВт	кВт	-		-			
1.	2,5	5,8	6,3	6,1	8,9	6,7	14	21	17	23	27	18
2.	13,1	4,7	10,4	11,5	1,7	9,1	30	12	26	28	22	27
3.	3,5	5,5	6,5	7,0	9,0	5,1	12	24	15	24	25	21
4.	12	4,0	9,0	12,1	2,4	8,5	24	16	19	25	21	30
5.	10,1	4,5	9,2	13,2	3,7	3,5	15	22	16	22	29	17
6.	8,5	3,5	4,6	12,1	4,5	4,8	19	31	19	16	22	29
7.	12,4	16,1	13	11,2	5,1	10,4	16	13	12	15	17	11
8.	13	15,5	8	15,3	6,1	11	20	8	10	12	16	15
9.	12,6	15,9	10	12,5	7,1	10,5	19	10	5	15	10	12
10.	13,5	15,2	10	6	9	4,7	15	8	10	21	16	23
11.	10	10,2	23	7,8	14	11,6	10	14	6	10	15	19
12.	14	21	7,5	19,5	23	20,4	10	15	16	19	17	15
13.	12	23	7	20	21	24,4	16	12	22	8	10	7
14.	10	9,7	19	17	21	18,5	15	21	12	10	9	17
15.	3,8	4,7	5,9	11,3	8,5	7,5	15	21	10	12	5	21
16.	4,8	5,2	6,7	12,5	9,5	2,4	16	10	7	4	25	21
17.	5,3	4,9	4,8	12	5,2	6,1	13	22	16	10	14	17
18.	4	4	10	9,5	11	6,5	20	15	16	10	11	9
19.	5,1	6,3	10,5	12,5	9,8	12,1	15	17	13	7	12	11
20.	10,1	13,1	5,5	6,2	13,5	10	13	10	21	15	8	12
21.	9,5	8,6	12,2	10	15	7,8	12	10	15	13	19	21
22.	10	9,5	16,5	4,5	6,7	9,5	15	10	12,5	22	13	14

Продолжение таблицы 14

Ва-	Р _{1,} кВт	Р _{2,} кВт	Р _{3,} кВт	Р _{4,} кВт	Р _{5,} кВт	Р _{6,} кВт	t ₁ , c	t ₂ , c	t ₃ , c	t ₄ , c	t ₅ , c	t ₆ , c
23.	11,5	10,1	20	3,5	9,9	6,5	15	16	8	25	10	15
24.	11	15	13,5	19	11	8	15	12	10	6	10	21
25.	6,5	12	14	21	9	10	16	18	15	8	10	10
26.	7,5	8	20	16,5	13	14	15	14	8	10	13	14
27.	9,5	16	13	18	10	9	14	10	12	10	21	20
28.	10,1	13	14,5	20	9	11	18	13	16	7	12	15
29.	12,3	15,5	21	20,5	9,5	13	10	15	13	21	8	10
30.	8,6	8,6	19	18	12	12,5	20	10	5	13	9	25
31.	7,3	13,5	19,5	16	11,5	14	16	12	10	19	9	8
32.	9,6	14	18	17	12,6	13	25	10	16	15	9	26
33.	10,5	12,1	14	17,5	12,5	9	10	13	10	14	24	19
34.	14	15,2	16	18,5	13	8,5	17	11	5	9	25	18
35.	13	14	17	20,5	13,1	9	12	25	10	18	17	13
36.	8	8,7	18,5	21	10,5	10	26	9	7	10	19	16
37.	7	9	19	17,5	11	12	15	17	8	10	22	16
38.	3,8	9,5	20	16	11,5	13	18	20	17	15	12	6
39.	6,5	9,9	20,5	17	12	12,5	16	25	17	9	12	14
40.	12,5	10,2	19,5	18	13	14	15	21	17	16	11	12

Задача 2.

Для вариантов задачи в таблице 15 приведены значения моментов M_1 , M_2 , M_3 на валу двигателя для соответствующих участков графика нагрузки, время работы t_1 , t_2 , t_3 двигателя с заданными моментами нагрузки, время паузы t_0 , частота вращения двигателя.

Определить для заданного варианта расчетную мощность двигателя и выбрать по каталогу асинхронный двигатель, предназначенный для привода механизма с циклическим графиком нагрузки в повторно-кратковременном режиме работы. Провести проверку двигателя по перегрузочной способности.

Таблица 15

Вариант	М _{1,} Н м.	М ₂ , Н м.	М ₃ , Н м.	t ₁ , c	t ₂ , c	t ₃ , c	t ₀ , c	n _{2ном} , мин ⁻¹
1.	80	40	60	10	5	20	25	1410
2.	120	100	95	10	10	15	55	930
3.	50	20	30	10	15	10	55	915
4.	150	125	145	10	20	10	60	930
5.	150	130	160	10	25	20	35	1415
6.	40	30	10	5	15	20	50	930
7.	40	25	20	5	15	15	55	1420
8.	30	15	25	5	20	10	55	950
9.	20	15	10	5	10	5	60	935
10.	180	140	150	5	15	15	25	1440
11.	30	20	10	15	10	20	55	1440
12.	30	40	60	15	5	15	55	1400
13.	30	45	20	15	10	10	55	1410

Продолжение таблицы 15

	T	T		Продолжение таблицы 15				
Вариант	М _{1,} Н м.	М _{2,} Н м.	М ₃ , Н м.	t ₁ , c	t ₂ , c	t ₃ , c	t ₀ , c	n _{2ном} , мин ⁻¹
14.	30	50	30	15	15	10	50	940
15.	200	180	170	15	20	5	60	930
16.	220	230	215	10	15	10	25	940
17.	20	15	25	10	10	15	55	930
18.	20	45	40	10	5	10	75	950
19.	25	20	15	10	15	15	60	950
20.	20	25	15	10	10	5	20	1440
21.	25	50	40	15	15	20	55	1400
22.	25	20	10	15	15	2	25	950
23.	20	35	10	15	15	10	30	920
24.	25	40	10	15	15	15	55	930
25.	25	15	10	15	10	20	55	950
26.	245	230	240	5	10	10	40	940
27.	60	50	55	5	15	25	10	1410
28.	45	10	20	5	20	10	50	950
29.	45	15	10	5	10	10	75	950
30.	40	20	10	5	20	5	20	1440
31.	100	50	60	15	10	15	20	1410
32.	110	90	100	15	10	15	50	930
33.	55	25	30	10	20	15	55	915
34.	140	105	130	10	15	15	55	930
35.	160	120	100	5	10	10	30	1440
36.	25	35	55	15	10	10	55	1400
37.	20	15	20	10	15	20	40	930
38.	20	45	40	5	10	10	65	950
39.	15	35	30	10	15	20	45	950
40.	145	100	90	5	10	15	30	1440
41.	20	15	10	15	10	5	40	1440
42.	130	105	140	5	15	5	40	930
43.	30	25	10	15	10	20	50	1410
44.	50	40	30	5	15	10	45	1410
45.	40	25	35	5	20	10	50	950
46.	190	180	150	10	15	5	60	930
47.	200	215	205	10	5	15	25	940
48.	210	205	195	5	15	10	35	950
49.	25	20	10	10	15	15	50	950
50.	20	25	15	10	10	10	35	1440
51.	20	15	10	15	10	15	40	1400
52.	15	30	10	10	15	5	40	950
53.	25	40	10	15	10	25	45	950
54.	20	35	40	10	15	15	40	920
55.	20	10	15	15	10	25	45	950
56.	230	215	210	5	10	5	40	940
57.	55	40	50	5	10	20	30	1410
58.	40	15	25	5	15	25	50	950
59.	40	20	10	5	15	10	60	950
60.	35	20	15	10	15	5	35	1440

5. Проверка возможности пуска и устойчивости работы электродвигателей

5.1 Примеры решения задач

Задача 1. Проверить двигатель на возможность пуска с номинальной нагрузкой на валу при питании от трансформатора TM-63/10 с номинальной мощностью S_H =63 кBA, номинальным выходным фазным напряжением U_{2H} =220B, напряжением короткого замыкания u_{κ} =8,5% через линию электропередач длинной 200 м, выполненную проводом AC-16 с погонным сопротивлением r_n =2,2 Oм/км.

Характеристики электродвигателя:

Тип - 4A112M4У3

Номинальная мощность $P_H = 5.5 \text{ кBT}$,

Номинальное скольжение $s_H = 5 \%$,

Коэффициент мощности $\cos \varphi = 0.86$,

Номинальный КПД $\eta_H = 85,5 \%$,

Кратность пускового момента $\mu_{\rm n} = 2$,

Кратность критического момента $\mu_{\kappa} = 2,2,$

Кратность минимального момента $\mu_{min} = 1,6,$

Кратность пускового тока $K_i = 7$.

Решение:

Для проверки двигателя на возможность пуска найдем максимально допустимое падение напряжения при пуске двигателя

$$\Delta U = 1 - \sqrt{\frac{M_{us\delta}^{0} + M_{mp}^{0}}{\mu_{n}}}$$

где $M^0_{\,_{изб}}$ — относительный (к номинальному) избыточный момент, идущий на разгон электропривода. Обычно принимают $M^0_{\,_{изб}}$ = 0,25.

 $M_{\text{тр}}^{0}$ – относительный момент трогания – момент сопротивления на валу двигателя при пуске.

 $M_{Tp}^{0} = 1$, т.к. запуск проводится с номинальной нагрузкой.

Выбранный двигатель имеет провал в механической характеристике и если момент сопротивления на валу при пуске будет больше минимального и меньше пускового, разгон прекратится на частоте около 20% от синхронной. Поэтому при пуске необходимо, чтобы момент на валу не превышал минимальный, а в формуле 30 использовать кратность минимального момента μ_{min} .

$$\Delta U = 1 - \sqrt{\frac{M_{usb}^{0} + M_{mp}^{0}}{\mu_{\min}}}$$

$$\Delta U = 1 - \sqrt{(1+0.25)/1.6} = 0.12.$$

Найдем падение напряжения на зажимах двигателя при пуске, которое будет складываться из падения напряжения в трансформаторе и падения напряжения в линии. Для расчетов потребуется пусковой ток двигателя $I_{\text{п.дв.}}$ и номинальный ток трансформатора $I_{\text{н.тр.}}$. Вычислим их.

Пусковой ток двигателя

$$I_{n.\partial e.} = K_I \frac{P_{H}}{\sqrt{3} \cdot U_{\mu} \eta_{\mu} \cos \varphi},$$

где K_I – кратность пускового тока двигателя, $P_{\scriptscriptstyle H},\,U_{\scriptscriptstyle H},\,\eta_{\scriptscriptstyle H}$ – номинальные мощность, напряжение и КПД двигателя, $\cos\phi$ - коэффициент мощности.

$$I_{\text{п./лв.}} = (6.5500)/(1,73.380.0,84.0,83) = 72 \text{ A}.$$

Номинальный ток трансформатора

$$I_{\mu mp} = \frac{S_{\mu}}{\sqrt{3} \cdot U_{\mu}}$$

где S_H , U_H – номинальные мощность и напряжение трансформатора.

$$I_{\text{H.Tp.}} = 63000/(1,73.400) = 91 \text{ A}.$$

Падение напряжения в линии

$$\Delta U_{\scriptscriptstyle R} = \frac{I_{\scriptscriptstyle R\partial\theta} \cdot l \cdot \sqrt{R_{\scriptscriptstyle R}^2 + x_{\scriptscriptstyle R}^2}}{U_{\scriptscriptstyle H}}$$

где 1 – длина линии,

 $R_{\rm II}$ – активное погонное сопротивление линии,

 x_{π} — реактивное погонное сопротивление линии, принимается 0,4 Ом/км для воздушной линии 0,4 кВ,

U_н – номинальное фазное напряжение питания,

 $I_{\text{п.дв.}}$ — пусковой ток двигателя.

$$\Delta U_{\pi} = (72.0, 2.\sqrt{2, 2^2 + 0.4^2})/220 = 0.146$$

Падение напряжения в трансформаторе

$$\Delta U_{mp} = \frac{u_{\kappa} \% \cdot I_{u.\partial s.}}{100 \cdot I_{u.mp.}}$$

где u_к% - напряжение короткого замыкания трансформатора.

$$\Delta U_{\text{Tp}} = (8,5.72)/(91.100) = 0,067.$$

Суммарное падение напряжения

$$\Delta U = \Delta U_{\pi} + \Delta U_{\tau p} = 0.146 + 0.067 = 0.214,$$

что больше максимально допустимого 0,12. Поэтому двигатель не запустится.

Для обеспечения пуска можно предложить следующие меры: увеличить сечение питающей линии, сократить длину линии за счет рационального расположения питающей ТП, использовать трансформатор большей мощности или трансформатор с меньшим напряжением короткого замыкания.

Для обеспечения пуска двигателя М1 можно предложить следующие меры: увеличить сечение питающей линии, сократить длину линии за счет рационального расположения питающей ТП, использовать трансформатор большей мощности или трансформатор с меньшим напряжением короткого замыкания.

Будем использовать провод большего сечения, чтобы снизить суммарные потери до максимально допустимого, т.е. на 0.214 - 0.12 = 0.094. Пропорционально снижению потерь необходимо увеличить сечение провода не менее чем в 0.146/(0.146 - 0.094) = 2.8 раза.

Выбираем провод А-50 с погонным сопротивлением 0,7 Ом/км. Падение напряжения в линии составит

$$\Delta U_{\pi} = (72.0, 2.\sqrt{0, 7^2 + 0, 4^2})/220 = 0,046,$$

а суммарное падение напряжения

$$\Delta U = \Delta U_{\pi} + \Delta U_{\tau p} = 0.046 + 0.067 = 0.114,$$

Что меньше максимально допустимого. Двигатель запустится.

Задача 2.

Проверить устойчивость работы электродвигателя M2 с номинальной нагрузкой на валу при пуске соседнего двигателя M1 по условию задачи 1. Характеристики двигателя M1 4A90L4У3:

Номинальная мощность $P_H = 2.2 \text{ кBT}$,

Номинальное скольжение $s_H = 5.4 \%$,

Коэффициент мощности $\cos \varphi = 0.83$,

Номинальный КПД $\eta_{\rm H} = 80$ %,

Кратность пускового момента $\mu_{\Pi} = 2$,

Кратность критического момента $\mu_{\kappa} = 2,2,$

Кратность минимального момента $\mu_{min} = 1,6,$

Кратность пускового тока $K_i = 6$.

Решение:

При определении устойчивости работы двигателя M2 при пуске двигателя M1, пренебрегаем относительно малым рабочим током двигателя M2 по сравнению с пусковым током двигателя M1. Поэтому используем найденное в предыдущей задаче падение напряжения.

Максимально допустимое снижение напряжения для устойчивой работы

$$\Delta U_{\partial on} = 1 - \sqrt{\frac{M_{C}^{0}}{\mu_{\kappa}}}$$

где M_C^0 - относительный момент сопротивления на валу двигателя, т.к. он работает с номинальной нагрузкой M_C^0 =1,

μ_к – кратность критического момента.

$$\Delta U_{\partial on} = 1 - \sqrt{\frac{1}{2,2}} = 0.28$$

Падение напряжения в линии $\Delta U = 0.214$ меньше найденного максимально допустимого, поэтому двигатель M2 будет устойчиво работать при пуске двигателя M1.

5.2 Задачи для самостоятельного решения

Задача 1.

Проверить возможность прямого пуска электродвигателя 4A2OOL4У3 измельчителя кормов. Двигатель подключен к трансформатору TM160-10/0,4 (u_{κ} =0,045) через линию электропередачи длиной 50м, выполненную проводом A-50 с удельными параметрами R_{o} =0,580м/км, X_{o} =0,340м/км.

Задача 2.

Определить напряжение на клеммах двигателя АИР225M2 при пуске от трансформатора ТМ160-10/0,4 (u_{κ} =5,5 %) по линии длиной 60м, выполненной проводом A-50 (R_{o} =0,64 Ом/км, X_{o} =0,45 Ом/км).

Задача 3.

Определить критический момент электродвигателя серии 4A с $P_{\rm H}$ =5,5 кВт и n_c =1500 мин $^{-1}$ привода насоса при 0,7 $U_{\rm H}$. Сделать вывод о возможности работы электропривода, если момент сопротивления $M_{\rm C}$ равен номинальному моменту электродвигателя.

Задача 4.

Короткозамкнутый двигатель мощностью 10 кВт и напряжением 380 В запускают от трансформатора мощностью 25 кВА u_{κ} =8,5 %. Двигатель соединен с трансформатором воздушной линией длиной 0,5 км, выполненной проводом AC25 с погонным сопротивлением $r_{\rm n}$ =1,4 Ом/км. Определить колебания напряжения на двигателе при его запуске.

Задача 5.

Проверить возможность пуска асинхронного двигателя 4A180M4, питающегося от трансформатора TM-160-10/0,4 с u_{κ} =0,05 по воздушной линии электропередачи, выполненной проводом с R_0 =0,3 Oм/км, X_0 =0,35 Ом/км и длиной L=90 м.

Задача 6.

Определить напряжение на двигателе AИP225M2 ($P_{2\text{H}}$ =55 кВт; n_{H} =2940об/мин; η =0,925; $\cos \varphi$ =0,91; K_{π} =1,8; K_{min} =2,6; K_{max} =2,6; K_{i} =7,5) при пуске от трансформатора ТМ160-10/0,4 с u_{k} =4,7% по линии длиной 60м, выполненной проводом с R_{o} =0,64 Ом/км, X_{0} =0,45 Ом/км.

Задача 7.

Проверить устойчивость узла нагрузки, состоящего из электродвигателя 4A2OOL4У3, который подключен к трансформатору ТМ-160-10/0,4 (u_{κ} =0,045) через ЛЭП длиной 50м, выполненную проводом A-50 (R_{o} =0,58 Ом/км, X_{o} =0,34 Ом/км).

Задача 8.

Поверить двигатель на возможность пуска при снижении напряжения на 30% от номинального и моментом трогания $0.9~M_{\scriptscriptstyle H}$.

Двигатель: 4A100S4У3

Его паспортные данные: n_н, мин⁻¹ P_{H} , кBт U_{H} , B $\eta_{\scriptscriptstyle H},\,\%$ Cosq K_{I} $\mu_{\scriptscriptstyle K}$ μ_{Π} 6,5 220 1420 82 0,83 2,2 2

Задача 9.

Поверить двигатель на возможность пуска при снижении напряжения на 35% от номинального и моментом трогания $0.8~\mathrm{M}_{\scriptscriptstyle H}$.

Двигатель: АИР132М4

Его паспортные данные:

Р _н , кВт	U _H , B	n _н , мин ⁻¹	ηн, %	Cosφ	$\mu_{\scriptscriptstyle K}$	$\mu_{\scriptscriptstyle \Pi}$	K_{I}
11	220	1478	87,5	0,87	2,2	2	7,5

Задача 10.

Проверить двигатель на устойчивость работы при снижении напряжения на 35% от номинального и моментом сопротивления $0.8~\mathrm{M}_{\scriptscriptstyle H}.$

Двигатель: АИР132М4

Его паспортные данные:

Рн, кВт	U _H , B	n _н , мин ⁻¹	ηн, %	Cosφ	$\mu_{\scriptscriptstyle K}$	$\mu_{\scriptscriptstyle \Pi}$	K_{I}
11	220	1478	87,5	0,87	2,2	2	7,5

Задача 11.

Проверить двигатель на устойчивость работы при снижении напряжения на 30% от номинального и моментом сопротивления $0.9~\mathrm{M}_{\scriptscriptstyle H}.$

Двигатель: 4A90L2У3

Его паспортные данные:

Р _н , кВт	U _H , B	n _н , мин ⁻¹	ηн, %	Cosφ	$\mu_{\scriptscriptstyle K}$	$\mu_{\scriptscriptstyle \Pi}$	K _I
2	220	2875	81	0,83	2,2	2	6,5

5.3 Контрольные задания

Задача 1.

Проверить электродвигатель на возможность пуска при питании от трансформатора через линию электропередач. Параметры двигателя указаны в таблице 16, в таблице 17 – параметры линии и трансформатора.

Таблица 16

Donwaya	Пригодоли	Парамет	ры линии	Параметр	ы трансформа	тора
Вариант	Двигатель	1, км	R_{Π} , O_M/κ_M	X_{Π} , Ом/км	S _h , ĸBA	u _K , %
1	2	3	4	5	6	7
1	АИР100L2	0,3	0,58	0,34	160	4,5
2	АИР112М2	0,4	0,64	0,45	160	4,7
3	АИР132М2	0,5	0,3	0,35	160	5,0
4	АИР 160S2	0,6	1,4	0,4	100	5,5
5	АИР100L4	0,7	0,58	0,34	160	4,5
6	АИР112М4	0,8	0,64	0,45	160	4,7
7	АИР132S4	0,9	0,3	0,35	160	5,0
8	АИР32М4	1	1,4	0,4	100	5,5
9	АИР132S6	0,5	0,58	0,34	160	4,5
10	АИР132М6	0,6	0,64	0,45	160	4,7
11	AHPI60S6	0,7	0,3	0,35	160	5,0
12	АИР160М6	0,8	1,4	0,4	100	5,5

Таблица 17

Nº	Тип электродвигателя	Мощность Р _н , кВт	Частота вращения $n_{ m H},$ об/мин	Ток статора <i>I</i> _н , А	КПД η _н , %	$cos \phi_{_{ m H}}$	$I_{ m nyck}$	$\frac{M_{пуск}}{M_{ном}}$	$\frac{M_{\text{Makc}}}{M_{\text{Hom}}}$
1	2	3	4	5	6	7	8	91	10
1	АИР100L2	5,5	2850	10,7	88,0	0,89	7,5	2,1	2,4
2	АИР112М2	7,5	2895	14,7	88,0	0,88	7,5	2,0	2,2
3	АИР132М2	11,0	2910	21,1	88,0	0,90	7,5	1,6	2,2
4	АИР 160S2	15.0	2910	28,5	90,0	0,89	7,0	1,8	2,7
5	АИР100L4	4,0	1410	8,52	85,0	0,84	6,0	2,1	2,4
6	АИР112М4	5,5	1430	11,3	86,0	0,86	6,0	2,0	2,5
7	АИР132S4	7,5	1440	15,1	87,5	0,86	7,5	2,0	2,5
8	АИР32М4	11,0	1450	22,2	88,5	0,85	7,5	2,2	3,1
9	АИР132S6	5,5	960	12,3	85,0	0,80	7,0	2,0	2,2
10	АИР132М6	7,5	960	16,5	85,5	0,81	7,0	2,0	2,2
11	AHPI60S6	11,0	970	22,9	88,0	0,83	6,5	2,0	2,7
12	АИР160М6	15,0	970	30,5	88,0	0,85	6,5	2,0	2,7

Литература

- 1. Воробьев В.А. Электропривод сельскохозяйственных машин: учеб. для вузов. М.: БИБКОМ, 2016. 304 с.
- 2. Епифанов А.П. Основы электропривода: учеб. пособие. СПб.: Лань, 2017. 192 с.
- 3. Епифанов А.П., Малайчук Л.М., Гущинский А.Г. Электропривод: учеб. для вузов / под ред. А.П. Епифанова. СПб.: Лань, 2012. 400 с.
- 4. Епифанов А.П. Электропривод: учеб. пособие. СПб.: Лань, 2016. 400 с.
- 5. Епифанов А.П. Электропривод в сельском хозяйстве: учеб. пособие. СПб.: Лань, 2016. 224 с.
- 6. Ильинский Н.Ф., Москаленко В.В. Электропривод: энерго- и ресурсосбережение: учеб. пособие для вузов. М.: Академия, 2008. 208 с.
- 7. Москаленко В.В. Электрический привод: учеб. для вузов. М.: Академия, 2007. 368 с.
- 8. Никитенко Г.В. Электропривод производственных механизмов: учеб. пособие для вузов. СПб.: Лань, 2013. 224 с.
- 9. Онищенко Г.Б. Электрический привод: учеб. для вузов. М.: Академия, 2008. 288 с.
- 10. Фролов Ю.М., Шелякин В.П. Основы электрического привода. Краткий курс: учеб. пособие для вузов. М.: КолосС, 2007. 252 с.
- 11. Фролов Ю.М., Шелякин В.П. Проектирование электропривода промышленных механизмов: учеб. пособие для вузов. СПб.: Лань, 2014. 448 с.
- 12. Фролов Ю.М., Шелякин В.П. Сборник задач и примеров решений по электрическому приводу: учеб. пособие для вузов. СПб.: Лань, 2012. 368 с.
- 13. Шичков Л.П. Электрический привод: учеб. для вузов. М.: КолосС, 2006. 279 с.
- 14. Электропривод и электрооборудование: учеб. для вузов / А.П. Коломиец, Н.П. Кондратьева, И.Р. Владыкин, С.И. Юран. М.: КолосС, 2006. 328 с.
- 15. Кацман М.М. Электрический привод: учеб. для СПО. М.: Академия, 2013. 384 с.

Приложение 1

Основные технические данные электродвигателей серии АИР основного исполнения

N₂	Тип электродви- гателя 2	Мощность Р _н , кВт	Частота вращения $n_{ m H},$ об/мин	Ток статора <i>I</i> _н , А	%	cosц _н		М _{пуск} М _{ном}		заме	аметры кемы ещения, о.е R ₂ ^{II} 12	Момент инерции ротора, кг·м²
1					6		_	91	10	11	12	13
		Синхронна	ія частота	вращен	ия 50	00 00/	мин					
1	АИР50А2	0,09	2655	0,30	60,0	0,75	4,5	2,2	2,2	0,, 15	0,14	0,000025
2	АИР50В2	0,12	2655	0,39	63,0	0,75	5,0	2,2	2,2	0,11	0,12	0,000028
3	АИР56А2	0,18	2730	0,52	68,0	0,78	5,0	2,2	2,2	0,17	0,094	0,00042
4	АИР56В2	0,25	2730	0,70	69,0	0,79	5,0	2,2	2,2	0,16	0,11	0,00047
5	АИР63А2	0,37	2730	0,91	72,0	0,86	5,0	2,2	2,2	0,14	0,096	0,00075
6	АИР63В2	0,55	2730	1,31	75,0	0,85	5,0	2,2	2,2	0,13	0,096	0,00095
7	АИР71А2	0,75	2820	1,75	79,0	0,80	6,0	2,6	2,7	0,12	0,064	0,00095
8	АИР71В2	1,1	2805	2,55	79,5	0,80	6,0	2,2	2,4	0,13	0,069	0,0011
9	АИР80А2	1,5	2850	3,3	81,0	0,85	6,5	2,2	2,6	0,084	0,049	0,0018
10	АИР80В2	2,2	2850	4,6	83,0	0,87	6,4	2,1		0,076	0,049	0,0021
11	АИР 90L2	3,0	2850	6,1	84,5	0,88	7,0	2,0	2,2	0,072	0,047	0,0035
12	АИР100S2	4,0	2850	7,9	87,0	0,88	7,5	2,0	2,4	0,054	0,036	0,0055
13	АИР100Ь2	5,5	2850	10,7	88,0	0,89	7,5	2,1	2,4	0,050	0,036	0,0070
14	АИР112М2	7,5	2895	14,7	88,0	0,88	7,5	2,0	2,2	0,046	0,048	0,010
15	АИР132М2	11,0	2910	21,1	88,0	0,90	7,5	1,6	2,2	0,040	0,025	0,023
16	АИР 160S2	15.0	2910	28,5	90,0	0,89	7,0	1,8		0,052	0,022	0,043
17	АИР160М2	18.5	2910	34,5	90,5	0,90	7,0	2,0	2,7	0,019	0,022	0,048
18	АИР 180S2	22.0	2920	41,5	90,5	0,89	7,0	2,0	2,7	0,030	0,020	0,063
19	АИР 180М2	30,0	2925	55,4	91,5	0,90	7,5	2,2	3,0	0,030	0,018	0,076
20	АИР200М2	37,0	2940	71,0	91,0	0,87	7,0	1,6	2,8	0,029	0,021	0,12
21	AHP200L2	45,0	2940	84,5	92,0	0,88	7,5	1,8	-	0,027	0,020	0,13
22	АИР225М2	55,0	2940	99,3	92,5	0,91	7,5	1,8	2,6.	0,026	0,019	0,20
23	AHP250S2	75,0	2940	134,6	93,0	0,91	7,5	1,8	3,0	0,021	0,015	0,47
24	АИР250М2	90,0	2940	160,0	93,0	0,92	7,5	1,8	3,0	0,016	0,016	0,52

			Частота	Ток	КПД					Пар	аметры	Момент
Ma	Тип электродви-	Мощность	вращения			1	$I_{\rm пуск}$	Мпуск	Ммакс	схем	ы заме-	инерции
№	гателя	$P_{\rm H}$, к B т	$n_{_{ m H}},$	статора 1 л		$cos \phi_{_{ m H}}$	I_{HOM}	M_{hom}	М _{ном}	щен	ия, о.е	ротора,
			об/мин	$I_{\rm H}, A$	%					R_1^I	R_2^{II}	кг · м²
1	2	3	4	5	6	7	8	91	10	11	12	13
		Синхронна	я частота	вращен	ия 15	00 об/	мин.					
25	АИР50А4	0,06	1335	0,27	53,0	0,63	4,5	2,3	2,2	0,16		0,000032
26	АИР50В4	0,09	1335	0,37		0,65	4,5	2,3	2,2	0,13	0,21	0,000038
27	АИР56А4	0,12	1350	0,44	63,0	0,66	5,0	2,3	2,2	0,18	0,15	0,00070
28	АИР56В4	0,18	1350	0,63	64,0	0,68	5,0	2,3	2,2	0,18	0,16	0,00081
29	АИР63А4	0,25	1320	0,83	68,0	0,67	5,0	2,3	2,2	0,15	0,14	0,0012
30	АИР63В4	0,37	1320	1,18	68,0	0,70	5,0	2,3	2,2	0,17	0,14	0,0015
31	АИР71А4	0,55	1350	1,61	75,0	0,73	5,0	2,3	2,4	0,13	0,11	0,0013
32	АИР71В4	0,75	1350	1,90	75,0	0,80	5,0	2,5	2,6	0,11	0,11	0.0015
33	АИР80А4	И	1395	2,75	76,5	0,77	5,0	2,2	2,4	0,12	0,068	0,0034
34	АИР80В4	1,5	1395	3,52	78,5	0,80	5,3	2,2	2,4	0,12	0,061	0,0035
35	АИР 90L4	2,2	1395	4,98	81,0	0,81	6,5	2,2	2,4	0,098	0,060	0,0056
36	АИР100S4	3,0	1410	6,70	82,0	0,82	7,0	2,0	2,2	0,078	0,053	0,0085
37	АИР100L4	4,0	1410	8,52	85,0	0,84	6,0	2,1	2,4	0,067	0,053	0,011
38	АИР112М4	5,5	1430	11,3	86,0	0,86	6,0	2,0	2,5	0,054	0,041	0,016
39	АИР132S4	7,5	1440	15,1	87,5	0,86	7,5	2,0	2,5	0,048	0,033	0,027
40	АИР32М4	11,0	1450	22,2	88,5	0,85	7,5	2,2	3,1	0,043	0,042	0,048
41	АИР160S4	15,0	1455	28,5	90,0	0,89	7,0	1,9	2,9	0,047	0,025	0,080
42	АИР160М4	18,5	1455	34,9	90,5	0,89	7,0	1,9	2,9	0,012	0,024	0,10
43	АИР180S4	22,0	1465	42,5	90,5	0,87	7,0	1,7	2,7	0,041	0,021	0,16
44	АИР180М4	30,0	1470	57,0	92,0	0,87	7,0	1,7	2,7	0,034	0,018	0,20
45	АИР200М4	37,0	1470	68,3	92,5	0,89	7,5	1,7	2,7	0,039	0,018	0,27
46	AHP200L4	45,0	1470	83,1	92,5	0,89	7,5	1,7	2,7	0,034	0,017	0,32
47	АИР225М4	55,0	1470	101	93,0	0,89	7,0	1,7	2,6	0,027	0,015	0,50
48	AMP250S4	75,0	1480	137,8	94,0	0,88	7,5	1,7	2,5	0,025	0,014	1,0
49	АИР250М4	90,0	1480	163,0	94,0	0,89	7,5	1,5	2,5	0,024	0,014	1,2
50	АИР280S4	110	1470	196	94,0	0,91	6,5	1,6	2,2	0,023	0,019	2,1
51	АИР280М4	132	1470	230	94,5	0,93	6,5	1,6	2,4	0,021	0,018	2,4
52	АИРЗ15S4	160	1470	286	94,5	0,91	5,5	1,4	2,0	0,018	0,017	3,0
53	АИР315М4	200	1470	352	95,0	0,92	5,5	1,6	2,2	0,014	0,014	3,5
54	АИР35584	250	1470	437	94,5	0,92	7,0	1,5	2,3	0,013	0,013	6,0
55	АИР355М4	315	1470	544	94,7	0,93	7,0	1,6	3,0	0,012	0,014	7,0

		Тин энактропри	Монности	Частота	Ток	КПД		I	M	Ммакс		аметры	Момент инерции
	№	Тип электродви- гателя	Мощность Р _н , кВт	вращения $n_{\rm H},$	статора	$\eta_{_{ m H}},$	$cos arphi_{_{ m H}}$					ия, о.е	ротора,
		Татсля	r _H , KD1	<i>п</i> _н , об/мин	$I_{\rm H}, A$	%		I _{HOM}	М _{ном}	М _{ном}	R_1^I	R_2^{II}	кг · м ²
	1	2	3	4	5	6	7	8	91	10	11	12	13
	1		Синхронна				•		<i>,</i> 1	10	11	12	13
			Сттротт	<i></i> 1401014	Брищен		00 001	.,,,,,,,,,,					
56	АИР63А6	0,18	860	0,79	56,0	0,62	4,0	2,0	2,2	0,24	0,22	0,0019	4,55
57	АИР63В6	0,25	860	1,04	59,0	0,62	4,0	2,0	2,2	0,18	0,21	0,0023	5,40
58	АИР71А6	0,37	915	1,31	66,0	0,63	4,5	2,1	2,3	0,17	0,15	0,0019	8,1
59	АИР71В6	0,55	915	1,74	69,0	0,68	4,5	1,9	2,2	0,16	0,15	0,0022	9,7
60	АИР80А6	0,75	920	2,26	71,0	0,71	4,0	2,1	2,2	0,16	0,12	0,0033	12,3
61	АИР80В6	1,1	920	3,05	75,0	0,74	4,5	2,2	2,3	0,12	0,11	0,0048	15,3
62	АИР90L6	1,5	925	4,16	76,0	0,72	6,0	2,0	2,2	0,11	0,088	0,0073	19,0
63	AИPI00L6	2,2	945	5,58	81,5	0,74	6,0	1,9	2,2	0,09	0,067	0,013	26,5
	АИР112МА6	· · · · · · · · · · · · · · · · · · ·	950	7,4	81,5	0,76	6,0	2,0		0,085		0,017	43,0
65	АИР112МВ6		950	9,1	82,5	0,81	6,0	2,0		0,077		0,021	48,0
66	АИР132S6	5,5	960	12,3	85,0	0,80	7,0	2,0		0,067		0,038	68,5
67	АИР132М6	7,5	960	16,5	85,5	0,81	7,0	2,0		0,060		_	81,5
68	AHPI60S6	11,0	970	22,9	88,0	0,83	6,5	2,0		0,073			125
69	АИР160М6	15,0	970	30,5	88,0	0,85	6,5	2,0		0,062			155
70	АИР180М6	18,5	980	36,9	89,5	0,85	6,5	1,8		0,056			180
71	АИР200М6	22,0	980	44,8	90,0	0,83	6,5	1,6		0,050		0,41	225
72	АИР200Ь6	30,0	975	59,6	90,0	0,85	6,5	1,6		0,046		0,46	250
73	АИР225М6	37,0	980	72,7	91,0	0,85	6,5	1,5		0,042			305
74	АИР250S6	45,0	980	87,0	92,5	0,85	6,5	1,5		0,037		1,1	390
75	АИР250М6	55,0	980 980	105 137	92,59	0,86 0,90	6,5	1,5		0,034	,	1,2	430 645
76 77	АИР280S6 АИР280M6	75,0 90,0	980	164	93,0 93,5	0,90	6,5 6,5	1,3 1,4		0,032		2,8 3,3	700
78	АИР 280 МО АИР 315 S 6	90,0 ПО	980	200	93,5	0,90	6,0	1,4		0,030			850
79	АИР 315М6	132	980	239	94,0	0,90	6,5	1,4		0,020			990
80	АИР355S6	160	980	288	94,0	0,90	6,5	1,7		0,023		7,3	ИЗО
81	АИР355М6	200	980	358	94,5	0,90	6,5	1.7		0,020		8.8	1280
01	7 H H 3331VIO	200	Синхронн		,				2,0	0,010	0,014	0.0	1200
82	АИР71В8	0,25	690	1,04	61,0	0,60	4,0	1,8	1,9	0,22	0,23	0,0021	8,9
83	АИР80А8	0,37	700	1,53	63,5	0,59	3,5	2,0	2,3	0,19	0,16	0,0036	12,1
84	АИР80В8	0,55	700	2,07		0,60	3,5	2,0	2.1 '	0,17	0,15	0,0047	13,0
	AИP90LA8	0,75	705	2,08		0,73	4,0	M	2,0	0,14		0,0075	18,5
86	АИР90LB8	1,1	700	3,02	77,0	0,72	3,5	1,4	2,0	0,13		0,0096	22,0
87	AP100L8	1,5	705	3,95	76,0	0,75	3,7	1,6	2,0	0,11	0,093	0,012	23,5
88	АИР112МА8	2,2	710	6,16	76,5	0,71	6,0	1,8	2,2	0,093	0,083	0,017	43,5
89	АИР112МВ8	3,0	700	7,8	79,0	0,74	6,0	1,8	2,2	0,080	0,083	0,025	48,5
90	АИР132S8	4,0	720	10,5	83,0	0,70	6,0	1,8	2,2	0,068	0,058	0,042	68,5
91	АИР132М8	5,5	715	13,6	83,0	0,74	6,0	1,8	2,2	0,070	0,061	0,057	82,0
92	АИР160S8	7,5	730	17,5	87,0	0,75	5,5	1,6		0,075		0,12	125
93	АИР160М8	11,0	730	25,5	87,5	0,75	6,0	1,6		0,066		0,15	155
94	АИР180М8	15,0	730	31,3	89,0	0,82	5,5	1,6		0,064			180
95	АИР200М8	18,5	730	39,0	89,0	0,81	6,0	1,6		0,057			225
96	АИР200L8	22,0	730	45,9	90,0	0,81	6,0	1,6		0,062			250
97	АИР225М8	30,0	730	62,2	90,5	0,81	6,0	1,4		0,045		0,69	305
98	АИР250S8	37,0	735	77,9	92,5	0,78	6,0	1,5		0,047		1,2	400
-	АИР250М8	45,0	735	93,6	92,5	0,79	6,0	1,4		0,037			430
100	АИР280S8	55,0	730	106	92,5	0,86	6,0	1,3		0,035			650
-	АИР280М8	75,0	730	141	93,0	0,87	6,0	1,4		0,028		4,0	735
102	АИР315S8	90,0	740	173	93,5	0,85	6,0	1,2		0,023			875
	АИРЗ15М8	110	740	209	93,5	0,85	6,0	1,1		0,023			1010
104	АИР355S8	132	735	252	93,5	0,85	6,0	1,6		0,023		9,0	1170
105	АИР355М8	160	735	306	93,5	0.85	6,0	1,6	2,0	0,020	U,UI /	10.0	1270

№	Тип электродви- гателя 2	Мощность Р _н , кВт 3 Синхронн	n _н , об/мин	статора <i>I</i> _н , А	6	$cos \phi_{_{ m H}}$	<i>I</i> _{ном}		M _{Makc} M _{Hom}	схем	аметры заме- ия, о.е $\frac{R_2^{II}}{12}$	Момент инерции ротора, кг · м ²
106 AИP250S10	22,0	580	45,8	89,0	0,82	5,0	1,2	2,2	0,050	0,019	1,4	370
107 АИР250М10	30,0	580	61,7	89,0	0,83	5,5	1,2	2,2	0,056	0,023	1,6	410
108 AИP280S10	32,0	580	78,2	91,5	0,79	6,0	1,3	2,3	0,031	0,027	3,7	605
109 АИР280М10	45,0	580	94,8	92,0	0,79	6,0	1,4	2,1	0,037	0,031	4,0	660
110 АИР315S10	55,0	585	115	92,5	0,79	6,5	1,2	1,9	0,028	0,026	5,2	785
111 АИР315М10	75,0	585	155	92,5	0,80	6,0	1,2	1.9	0,029	0,027	6,0	865
112 AИP355S10	90,0	590	178	92,5	0,83	6,0	1,1	1,9	0,028	0,021	9,3	1080
113 АИР355М10	110,0	590	217	93,0	0,83	6,0	1,1	1,9	0,024	0,021	11	1190
		Синхронн	ая частота	вращен	ия 50	00 об/м	иин					
114 АИР315S12	45,0	480	101	91,0	0,75	6,0	1Д	1,8	0,037	0,023	5,3	785
115 АИР315М12	55,0	480	123	91,5	0,75	6,0	1,1	1,8	0,033	0,032	6,2	865
116 АИР355S12	75,0	490	164	91,0	0,76	6,0	1,1	1,9	0,026	0,021	9,3	1080
117 АИР355М12	90,0	490	196	92,0	0,76	6,0	1.1	1.9	0,024	0,020	10,0	1190

Примечание: Электродвигатели габаритов (50-132) имеют класс нагревостойкости В;

Электродвигатели габаритов (160 - 355) имеют класс нагревостойкости F.

Основные технические данные электродвигателей с фазным ротором; степень защиты IP45(IP44)

Приложение 2

				_						
	Тип электро-		Энергет				Механи		Параметр	
№	двигателя	P_{H} , к B т	показ		<i>I</i> _{2н} А	E_{2H} B	характе		замеще	
	дынатели		КПД, %	$cos \phi_{_{ m H}}$			M_{K}	S _H %	R_1^I	R_2^{II}
]	2	3	4	5	6	7	8	9	10	11
			Синх			ения 1500				
1	АИР0100S4	2,2	75	0,70	22,5	84	2,2	5,2	0,058	0,054
	АИРФ100Ь4	3,0	77	0,78	21,2	91	2,5	5,8	0,052	0,082
-	АИРФ112М4	4,0	80	0,80	24	126	2,5	4,6	0,052	0,012
	АИРФ132S4	5,5	82	0,82	28	138	2,5	3,6	0,040	0,016
5	АИРФ132М4	7,5	85	0,78	64	185	2,5	3,5	0,032	0,029
6	АИРФ160Б4	11	86	0,86	22	305	2,5	4,4	0,038	0,051
7 .	АИРФ160М4	15	88	0,87	29	300	2,5	3,7	0,032	0,042
8 .	АИРФ180М4	18,5	89	0,88	38	295	2,5	2,9	0,022	0,034
9	АИРФ200М4	22	89,5	0,87	45	340	2,5	2,5	0,024	0,026
10	АИРФ200Ь4	30	90	0,87	55	350	2,5	2,5	0,026	0,030
11	АИРФ225М4	37	90,5	0,87	160	160	2,5	3,5	0,023	0,027
12	АИРФ250Б4	45	91	0,88	170	230	2,5	3,0	0,020	0,030
13	АИРФ250Б4	55	91,5	0,90	170	200	2,5	2,3	0,017	0,025
14	АИРФ250М4	75	92	0,86	170	250	2,5	2,5	0,015	0,021
15	АИРФ28084	90	92,5	0,84	210	250	2,2	4,2	0.022	0,014
16	АИРФ280М4	110	92,5	0,81	223	260	2,2	3,8	0,022	0,017
17	АИРФ31584	132	93	0,82	242	280	2,2	3,8	0,020	0,018
18	АИРФ315М4	160	93	0,87	257	310	2,2	3,6	0,017	0,016
19	АИРФ35554	200	93,5	0,87	330	300	2,2	3,5	0,014	0,012
20	АИРФ355М4	250	93,5	0,87	400	370	2,2	3,5	0,013	0,010
			Синх	ронная час	стота враш	ения 1000	об/мин			
21	АИРФ100L6	1,5	65	0,80	12,8	118	2,5	5,8	0,088	0,072
22	АИРФ112М6	2,2	70	0,87	14,2	135	2,5	5,2	0,067	0,012
23	АИРФ112М6	3,0	72	0,87	12,2	186	2,5	4,8	0,085	0,062
	АИРФ13286	4,0	78	0,88	16,1	262	2,5	4,6	0,074	0,061
25	АИРФ132М6	5,5	81	0,88	17,4	282	2,5	4,4	0,068	0,041
	АИРФ16086	7,5	85	0,77	18	300	2,5	5,1	0,054	0,068
27	АИРФ160М6	11	86	0,76	20	310	2,5	4,3	0,043	0,058
28	АИРФ180М6	15	87,5	0,80	25	325	2,2	4,4	0,035	0,057
29	АИРФ200М6	18,5	88	0,81	35	360	2,5	3,5	0,030	0,038
30	АИРФ200Ь6	22	88,5	0,80	45	330	2,5	3,5	0,032	0,041
31	АИРФ225М6	30	89	0,85	150	140	2,5 '	3,5	0,029	0,030
32	АИРФ25086	37	89,5	0,84	165	150	2,5	3,5	0,026	0,024
33	АИРФ25056	45	90	0,87	160	180	2,5	2,5	0,029	0,024
34	АИРФ250М6	55	90,5	0,87	182	191	2,5	3,5	0,023	0,026
35	АИРФ280Я6	75	91	0,86	200	210	2,2	3,6	0,031	0,038
36	АИРФ280М6	90	91,5	0,88	270	230	2,2	3,6	0,034	0,031
-	АИРФ31586	110	92	0,87	292	291	2,2	3,6	0,036	0,039
-	АИРФ315М6	132	92,5	0,88	300	268	2,2	3,6	0,026	0,018
-	АИРФ35586	160	93	0,82	346	290	2,2	3,6	0.024	0,026
	АИРФ355М6	200	93,5	0,88	400	302	2,2	2,8	0,026	0,028

	Ι		Энергет	ические			Механи	ическая	Параметр	ы схемы
№	Тип электро-	P_{H} , к B т	показ		<i>I</i> _{2н} А	E_{2H} B	характе		замеще	
	двигателя	т н, нег	КПД, %	$cos \varphi_{_{_{\mathbf{H}}}}$	-ZH	2 _{2H} 2	M _K	S _H %	R_1^I	R_2^{II}
	1		Синх	ронная ча	стота враг	цения 750				2
41	АИРФ160Б8	5,5	80	0,70	14	300	2,2	6,4	0,060	0,094
42	АИРФ160М8	7,5	82	0,70	16	290	2,2	5,5	0,053	0,079
43	АИРФ180М8	11	85	0,72	25	270	2,2	4,4	0,041	0,062
44	АИРФ200М8	15	86	0,70	28	360	2,2	3,5	0,040	0,048
45	АИРФ200Ь8	18,5	86,5	0,73	40	300	2,2	3,5	0,038	0,046
46	АИРФ225М8	22	87	0,82	140	102	2,2	4,5	0,039	0,043
47	АИРФ25088	30	88	0,81	155	125	2,2	4,0	0,033	0,034
48	АИРФ25088	37	89	0,80	155	148	2,2	3,5	0,031	0,031
49	АИРФ250М8	45	89,5	0,78	178	162	2,2	5,0	0,035	0,061
50	АИРФ28088	55	90	0,79	180	185	2,2	4,5	0,036	0,053
51	АИРФ280М8	75	90,5	0,80	221	217	2,2	4,5	0,036	0,052
53	АИРФ315М8	110	91,5	0,81	242	283	2,2	3,8	0,031	0,044
54	АИРФ35588	132	92	0,81	257	330	2,2	3,6	0,031	0,052
55	АИРФ355М8	160	92,5	0,87	330	310	2,2	3,5	0,034	0.050
	Основные	техничес	кие данны	е электрод	цвигателей	і с фазным	ротором;	степень за	ащиты IP23	3.
				ронная час	тота враш	ения 1500	об/мин.			
56			88,5	0,88	62	360	2,5.	3,0	0,029	0,035
57	АИРНФ200Ь4		89	0,88	75	375	2,5	3,5	0,029	0,036
58	АИРНФ225М4	1 55	89,5	0,87	200	170	2,5	3,6	0,031	0,035
59	АИРНФ25084	75	90	0,88	250	180	2,5	4,5	0,028	0,039
60	AHPH0250S4	90	90,5	0,87	260	220	2,5	4,0	0,021	0,031
61	АИРНФ250М4	110	91	0,90	260	250	2,5	3,5	0,022	0,031
62	АИРНФ28084	132	91,5	0,88	330	251	2,5	2,9	0,028	0,031
63	АИРНФ280М4	160	92	0,88	330	300	2,2	2,6	0,024	0,028
64	АИРНФ315S4	200	92,5	0,89	396	312	2,2	2,5	0,022	0,026
65	АИРНФ315М4	250	93	0,90	425	360	2,2	2,5	0,022	0,025
66	АИРНФ35584	315	93,5	0,90	460	420	2,2	2,2	0,020	0,022
67	АИРНФ355М4	400	94	0,90	485	505	2,2	2,0	0,019	0,020
			Синх	ронная час	стота враш	ения 1000	об/мин			
68	АИНФ200М6	22	87,5	0,81	37	380	2,2	3,5	0,032	0,043
69	АИРНФ200Ь6		88	0,82	46	375	2,2	4,0	0,032	0,042
70			88,5	0,86	180	140	2,2 '	4,0	0,032	0,038
71	АИРНФ25086	45	89	0,86	200	155	2,2	4,0	0,028	0,032
72			89,5	0,88	185	190	2,2	3,5	0,024	0,027
	АИРНФ250М6	_	90	0,85	200	250	2,2	3,0	0,022	0,025
74			90,5	0,88	277	202	2,2	3,6	0,033	0,038
	АИРНФ280М6		91	0,87	297	230	2,2	3,6	0,034	0,038
	АИРНФЗ 15S6		91,5	0,88	320	257	2 ">	3,0	0,026	0,029
_	АИРНФЗ 15М		92	0,88	352	291	2,2	3,0	0,024	0,024
	АИРНФ355Ь6		92,5	0,88	411	304	2,2	5	0,025	0,027
79	АИРНФ355М6	250	93	0,89	401	380	2,2	2,5	0,022	0,023
	T			кронная ча					,	
	АИРНФ200М8		85	0,78	30	380	2,2	4,5	0,046	0,054
	АИРНФ20088		86	0,79	40	330	2,2 '	4,5	0,042	0,066
	АИРНФ225М8		86,5	0,80	165	120	2,2	4,1	0,043	0,046
	AHPH№250S8		87,5	0,80	190	115	2,2	5,5	0,044	0,047
	АИРНФ250Б8		88,5	0,82	190	140	2,2	4,0	0,036	0,040
	АИРНФ250М8		89,5	0,83	185	190	2,2	3,5	0,029	0,031
	АИРНФ280Ь8		90	0,84	257	190	2,2	4,0	0,031	0,040
	АИРНФ280М8		90,5	0,84	267	214	2,2	4,0	0,031	0,040
	АИРНФЗ 15S8		91	0,84	311	225	2,2	3,5	0,030	0,032
	АИРНФЗ 15М8	_	91,5	0,84	364	247	2,2	3,5	0,031	0,031
	АИРНФ35588		92	0,86	353	285	2,2	2,7	0,024	0,026
91	АИРНФ355М8	.200	92,5	0,86	359	350	2,2	2,7	0,022	0,025

Приложение 3 Основные технические данные электродвигателей постоянного тока серии 4П

№	Тип электродвигателя	Р _н , кВт	I _H . A	К.П.Д., %
1	2	3	4	5
	UF	$I = 220 \text{ B}; n_{H} = 3000 \text{ of}$	5/мин	
1	4П080А2	0,37	2,9	61,5
2	4П080А2	0.75	4,3	72,0
3	4П080В1	U	5,9	72.0
4	4Π0100S1	1,6	9,0	75,0
5	4Π0100S2	2,2	12,5	79,0
6	4Π0100L1	3,0	17,5	80.0
7	4Π0112M2	5,5	24,5	83,0
		$I = 220 \text{ B}; n_{H} = 2200 \text{ od}$		
8	4Π080A2	0.25	1.8	58,0
9	4Π080A2	0,55	2,8	70.0
10	4П080B1	0,75	4,2	67,0
11	4ΠO100S1	1,1	5,1	74,0
12	4Π0100S2	1,5	8,5	76,0
13	4ΠΟ100L1	2,2	11.7	76,0
14	4Π0112M2	4,0	21,4	79,0
1,7		$n_{\rm H} = 220 \text{ B}; n_{\rm H} = 1500 \text{ obs}$		C1 F
15	4Π080A2	0.37	2,1	61,5
16	4Π080B2	0,55	2,9	66,0
17	4Π0100S1	0,75	4.3	70,0
18 19	4Π0100S2	1.1	5,9 8.7	75.0
	4Π0100Ll			74.0
20	4Π0112M1 4Π0112M2	2,2 3.0	12.0 18,4	74,0 74.0
21		$n = 220 \text{ B}; n_{\text{H}} = 1000 \text{ of}$		74.0
22	4Π080A2	0,25	1,4	58,0
23	4Π080B1	0,37	2,1	65,0
24	4Π0100S1	0,55	2,85	65,0
25	4Π0100S1	0,75	4,25	66,0
26	4Π0100L1	1.1	5.25	68,0
27	4Π0112M1	1,5	9,3	71,0
28	4ПОП2М2	2,2	13,3	70.0
		$n_{\rm H} = 220 \text{ B}; n_{\rm H} = 750 \text{ obs}$	•	, , , , ,
29	4Π0100S1	0,37	1,95	60,5
30	4Π0100S2	0,55	2,9	60,0
31	4Π0100L1	0.75	4,2	67,0
32	4Π0112M2	1,5	9,75	66,0
,	UF	I =220 В; n _н = 3000 об	/мин	•
33	4ΠHM132L04	3,5	16,5	74,0
34	4ΠHM112L04	5,3	21,2	83,0
35	4ΠHM160L04	6,3	26,9	82,0
36	4FIHM200S04	9,0	36,1	86,0
37	4ПНМ132М04	10,6	44,8	84,0
38	4ΠHM180L04	11,0	47,8	83,0
39	4ПФМ200М04	22,0	78,4	85,5
40	4ПФМ200Б	45,0	216	86,0
41	4ΠH225M	48.0	218	87,3
42	4ПФМ225М	55,0	287	87.6
43	4ПФM225L	63,0	324	88.7

No	Тип электродвигателя	Р _н , кВт	I _H . A	К.П.Д., %			
1	2	3	4	5			
$UH = 220 B; n_{H} = 2500 oб/мин$							
44	4ΠHM112L04	0.8	3,9	59,0			
45	4FIHM160L04	4.0	19,1	76,0			
46	4I1HM180L04	5,6	29,4	79,0			
47	4ΠHM180S04	7.1	33,6	80,0			
48	4F1H225S	16,0	76.0	80,5			
49	4ΠH225M	20,0	94,6	83.0			
50	4FIH225S	22,0	112	83,5			
51	4ΠH225L	32,0	158	85,0			
52	4ΠH250L	40,0	202	85,0			
53	4ПН250М	48,0	210	85,5			
54	4ΠΦM250M	55,0	274	87,6			
55	4ΠΦM250S	75,0	371	88,5			
56	4ΠΦM250L	90,0	486	88,7			
UH =220 B; n _H = 1500 об/мин							
57	4ΠHM112M04	2,5	11,5	73,0			
58	4ПНМ132M04	4,0	22.2	79,0			
59	4ΠHM132L04	5,5	29,4	80.0			
60	4ΠΟΜ200S	14,0	73,5	88,0			
61	4ΠHM180L04	15,0	84,6	86,0			
62	4ΠOM200M	17,0	92,4	89,0			
63	4ΠHM200L04	18,5 22.0	102	86,0 87.5			
64 65	4ПНМ225L04 4ПНМ225М	30.0	128 164	88.5			
66	4ΠΗ280S	34.0	178	84,5			
67	4ΠH225S	37,0	188	86,5			
68	4ΠΦM225Б	45.0	217	86,8			
69	4ΠΦM225M	55,0	287	87,6			
70	4ΠH250S	60.0	356	87,1			
71	4ПФМ225Ь	63,0	370	88,7			
72	4ΠΦM250S	67,0	382	88,2			
73	4ΠH250M	71.0	380	89.5			
74	4ΠΦM250M	80,0	405	88,5			
75	4ПН280Б	110	508	89.0			
76	4ПФM280S	125	632	87,0			
77	4ПФМ280М	140	784	88,4			
UH =220 B; n _н = 1000 об/мин							
78	4ПНМ132М04	2,5	1,6	71,0			
79	4I1HM132L04	3.15	2,3	74,0			
80	4ΠHM180L04	11,0	61,4	83,0			
81	4ΠHM200L04	16,0	78,0	86,0			
82	4ПФМ200М	22,0	132	85,5			
83	4ПФМ225S	26,5	146	83,0			
84	4ПФM225L	45,0	219	85,0			
85	4ΠH250M	48,0	236	85,5			
86	4ПФМ250М	55,0	286	87.5			
87	4IIH280S	75,0	385	88,5			
88	4ΠΦM280S	90.0	480	88,0			
89	4ΠΦM280L	125	532	88,5			

No	Тип электродвигателя	Р _н , кВт	I _H . A	К.П.Д., %		
1	2		4	5		
UH =220 B; n _н = 750 об/мин						
90	4ПНМ160М04	3,0	18,2	75.0		
91	4ΠOM200S	6,0	39,5	81,5		
92	4ΠHM180L04	7,1	48,2	80,0		
93	4ΠH225S	16,0	63.0	SO,5		
94	4ПФМ200М	18.5	104	82,5		
95	4ПФМ2258	21,0	131	80,1		
96	4ПФМ225L	22.0	136	82,0		
97	4ПФМ225М	27.0	164	82,0		
98	4ΠH250M	32.0	174	84,0		
99	4ПФМ250L	33,5	180	82,3		
100	4ПФМ250М	42,0	222	84.5		
101	4ΠH280S	45,0	245	87.0		
102	4ΠH280M	55,0	286	87.5		
103	4ПФМ280М	71,0	346	88,0		
	U	$H = 220 B; n_{H} = 600 o6/M$	иин			
104	4ΠH225S	12,5	78	79,5		
105	4ΠH225M	15,0	94	79,0		
106	4ПФМ225S	18,0	106	78,0		
107	4ПФМ225М	20,0	128	79,0		
108	4ПH225250М	24,0	134	82,0		
108	4ПH225250М	24,0	134	82,0		
109	4ПФМ225L	26,5	140	79,5		
110	4ΠH280S	34,0	172	84,5		
111	4ΠH280M	37,0	184	85,5		
112	4ΠΦM280S	45,0	223	87,5		
113	4ПФМ280М	55,0	287	87.5		
UH =220 B; n _н = 500 об/мин						
114	4ΠH225S	8.5	48	77,0		
115	4ПФМ225L	20,0	106	75,0		
116	4ПФМ250L	36,0	174	85,0		
117	4ΠΦM280L	55.0	288	88,0		

Учебное издание

Безик Валерий Александрович

Практикум по электрическому приводу

Учебно-методическое пособие по выполнению практических работ

Редактор Осипова Е.Н.

Подписано к печати 15.01.2019 г. Формат 60х84. 1/16. Бумага офсетная. Усл. п. 5,17. Тираж 25 экз. Изд. № 6302.

Издательство Брянского государственного аграрного университета 243365, Брянская обл., Выгоничский район, с. Кокино, Брянский ГАУ