Учебное издание Самусенко Владимир Иванович

Диагностирование и техническое обслуживание силовой передачи тракторов

Редактор Павлютина И.П

Подписано к печати 28.05.2015	Формат 60 х 84. 1/16.	Бумага печатная
Усл.п.л. 1,39	Тираж 50 экз	Издат. № 3005

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

ФГБОУ ВО БРЯНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

ИНЖЕНЕРНО-ТЕХНОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ТЕХНИЧЕСКИХ СИСТЕМ В АГРОБИЗНЕСЕ ПРИРОДООБУСТРОЙСТВЕ И ДОРОЖНОМ СТРОИТЕЛЬСТВЕ

ДИАГНОСТИРОВАНИЕ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИЛОВОЙ ПЕРЕДАЧИ ТРАКТОРОВ

Учебно-методические указания для выполнения лабораторной работы

по дисциплинам: «Эксплуатация машинно-тракторного парка» «Диагностика и техническое обслуживание машин» «Основы эксплуатации машин и оборудования» студентам инженерно-технологического факультета по профилям подготовки:

110800-01.62 Технические системы в агробизнесе 110800-04.62 Технический сервис в АПК 190100-01.62 Машины и оборудование природообустройства и дорожного строительства

УДК 629.3.014.2-23(07) ББК 40.72 С.17

Самусенко В.И. Диагностирование и техническое обслуживание силовой передачи тракторов. Учебно-методические указания для выполнения лабораторной работы/ В.И. Самусенко - Брянск: Издательство Брянского ГАУ, 2015.-26 с.

Методические указания предназначены для выполнения лабораторной работы по диагностированию и техническому обслуживанию коробки передач, главной и конечных передач, муфты сцепления тракторов. Для студентов инженернотехнологического факультета.

Рецензент доцент В.М. Кузюр

Рекомендовано к изданию решением методической комиссией инженернотехнологического факультета, протокол \mathfrak{N}_{2}

© Самусенко В.И., 2015

Содержание

ДИАГНОСТИРОВАНИЕ И ТЕХНИЧЕСКОЕ	
ОБСЛУЖИВАНИЕ СИЛОВОЙ ПЕРЕДАЧИ ТРАКТОРА	. 3
ЦЕЛЬ РАБОТЫ	. 3
СОДЕРЖАНИЕ РАБОТЫ	. 3
ОБОРУДОВАНИЕ	. 3
ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ	
1. НАЗНАЧЕНИЕ И УСТРОЙСТВО КОРОБКИ ПЕРЕДАЧ	. 4
2 НАЗНАЧЕНИЕ И УСТРОЙСТВО ВЕДУЩЕГО МОСТА	. 10
3. ОСНОВНЫЕ НАРУШЕНИЯ НОРМАЛЬНОЙ РАБОТЫ СИЛОВОЙ	
ПЕРЕДАЧИ ТРАКТОРА	. 13
4. НАЗНАЧЕНИЕ, УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ПРИБОРА	
КИ-5454	. 15
5. НАЗНАЧЕНИЕ, УСТРОЙСТВО И ПРИНЦИП РАБОТЫ	
ПРИСПОСОБЛЕНИЯ КИ-4850 ГОСНИТИ	. 18
6. ОПРЕДЕЛЕНИЕ СУММАРНОГО БОКОВОГО ЗАЗОРА В	
МЕХАНИЗМАХ СИЛОВОЙ ПЕРЕДАЧИ	. 19
7. ОСНОВНЫЕ ПРАВИЛА ЭКСПЛУАТАЦИИ И ТЕХНИЧЕСКОГО	
ОБСЛУЖИВАНИЯ МЕХАНИЗМОВ СИЛОВОЙ ПЕРЕДАЧИ	
СОДЕРЖАНИЕ ОТЧЁТА	. 21
КОНТРОЛЬНЫЕ ВОПРОСЫ	. 22
Литература	. 22

[©] Брянский ГАУ, 2015

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Назовите внешние признаки неисправной работы механизмов силовой передачи тракторов.
 - 2. Как устроен и работает прибор КИ-5454?
- 3. Назовите последовательность диагностирования силовой передачи трактора MT3-82
- 4. Как организовывается проверка осевого зазора в подшипниках ведущей шестерни переднего моста трактора МТЗ-82?
- 5. Как определяют суммарный боковой зазор в механизмах силовой передачи тракторов?

Литература

- 1. Конструкция тракторов и автомобилей. /Болотов А.К., Лопарев А.А., Судницын В.И. М.: КолосС, 2007. -28,6 л.
- 2. Практикум по эксплуатации машинно-тракторного парка. /Зангиев А.А., Скороходов А.Н. М.: КолосС, 2006. -20 л.
- 3. Технический сервис машин сельскохозяйственного назначения. /Варнаков В.В., Стрельцов В.В., Попов В.Н. и др М.: КолосС, 2004. -17 л
- 4. Тракторы и автомобили. /Богатырёв А.В., Лехтер В.Р. М.: КолосС, 2007. -37 п
- 5. Эксплуатация машинно-тракторного парка. /Зангиев А.А., Шпилько А.В., Левшин А.Г. М.: КолосС, 2007. -21 л
- 6. Автомобили. Эксплуатационные свойства: Учеб. пособие для вузов./ Вахламов В.К. М.: Академия, 2005. -240 с
- 7. Диагностика и ТО машин: учебник для студентов высш. учеб. заведений/[С.А. Ананьин, В.М. Михлин, И.И. Габитов и др.].- М.: Издательский центр «Академия», 2008.- 86 с.

ДИАГНОСТИРОВАНИЕ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИЛОВОЙ ПЕРЕДАЧИ ТРАКТОРА

ЦЕЛЬ РАБОТЫ. Приобрести практические навыки выполнения контрольнодиагностических и регулировочных операций.

СОДЕРЖАНИЕ РАБОТЫ. Провести диагностирование и необходимые регулировочные операции коробки передач трактора, главной и конечных передач, главной муфты сцепления.

Данная работа раскрывает компетенции ОК-6, ПК-6, ПК-11, ПК-12.

ОБОРУДОВАНИЕ. Трактор МТЗ-80,82, ДТ-75М, устройство для диагностирования зубчатых зацеплений КИ-5454, приспособление КИ-4850 ГОСНИТИ для измерения зазоров в подшипниках, угломер КИ-13909 для измерения суммарного бокового зазора в силовой передаче трактора, набор инструментов, плакаты.

ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ

Запрещается:

- приступать к выполнению работы без разрешения преподавателя или учебного мастера;
- пользоваться открытым огнем и курить;
- нахождение студента на другом рабочем месте;
- производить диагностирование коробки передач не убедившись в отсутствии людей спереди и сзади трактора;
- производить измерения при незаторможенном тракторе;
- включение устройства КИ-5454 без предварительной балансировки.

Необходимо:

- проверить наличие масла в корпусах механизмов;
- убедиться в комплектности и исправности инструмента;
- проверить надежность соединений карданной передачи, рычагов, педалей.

1 НАЗНАЧЕНИЕ И УСТРОЙСТВО КОРОБКИ ПЕРЕДАЧ

Коробка передач предназначена для преобразования значения и направления вращающего момента, передаваемого от двигателя к элементам трансмиссии. Она позволяет за счет изменения передаточного числа получать либо большое тяговое усилие при малой скорости движения, либо большую скорость при малом тяговом усилии, а также включать задний ход или устанавливать нейтральное положение (все передачи выключены) при длительной стоянке машин.

Большинство тракторов и автомобилей, эксплуатируемых в сельском хозяйстве, оснащено механическими коробками перемены передач. Такие коробки более просты в изготовлении и надежнее в эксплуатации, менее сложны в обслуживании.

Механические коробки передач классифицируют по следующим признакам:

типу зубчатых передач - с неподвижными осями валов (как правило, в тракторах) и планетарные (в автомобилях и тракторах с гидромеханической трансмиссией);

расположению валов относительно оси трактора - с продольным и поперечным расположением;

числу валов, определяющих кинематическую схему коробки, - двух-, трех- и четырехвальные;

числу передач переднего хода - трех-, четырех-, пятиступенчатые и т. д.;

принципу переключения передач - с подвижными зубчатыми колесами (каретками) (в тракторах Т-25A, Т-40M, МТЗ-80 и их модификациях) и неподвижными колесами постоянного зацепления, соединяемыми с валом при включении передачи специальными муфтами (в тракторах К-700, К-701, Т-150, Т-150K);

по числу перемещаемых кареток - двух-, трех-, четырехходо-вые и т. д.;

по назначению - основная, раздаточная, понижающий или повышающий редуктор, ходоуменьшитель.

Основные детали коробки передач

Шестерни (зубчатые колеса) - наиболее нагруженные детали коробок передач. Рабочие поверхности зубьев подвержены истиранию и усталостному разрушению. Поэтому шестерни изготавливают из высококачественных цементуемых сталей. Зубья выполняют с большой точностью и подвергают термической обработке.

Валы в коробках передач должны быть особенно жесткими, гак как даже незначительный прогиб вала приводит к перекосу шестерен и повышенному изнашиванию их зубьев. Для изготовления валов используют, как правило, качественные углеродистые стали. Если их делают заодно с шестернями, применяют и малоуглеродистые цементуемые стали. Для соединения с шестернями на поверхности валов обычно имеются шлицы. Только в редких случаях шестерни закрепляют шпонками.

Подшипники коробок передач в основном шариковые и роликовые (подшипники качения). Лишь в малонагруженных узлах применяют бронзовые или чугунные втулки (подшипники скольжения).

Корпуса коробок передач отливают из серого чугуна. Для некоторых тракторов их выполняют в общей отливке с корпусами задних мостов. Полость корпуса коробки используют, как масляную ванну.

Механизм переключения служит для перемещения кареток и для надежной фик-

При сезонных технических обслуживаниях тракторов и через одно ТО-2 автомобилей заменяют масло в картерах. Отработанное масло сливают сразу после остановки, пока оно не остыло. Затем заливают в картеры дизельное топливо (2/3 заправочной емкости) и промывают детали при движении вперед и назад в течение 5...7 мин. После этого сливают промывочную жидкость, очищают магниты пробок и, завинтив их, наливают свежее масло до нормального уровня. Во избежание загрязнения окружающей среды ни в коем случае не допускается выливать отработанное масло и промывочную жидкость на землю, в канавы и канализацию. Их следует собирать: топливо - для повторного использования после отстаивания и фильтрации, а масло- для восстановления.

В сроки, установленные заводом-изготовителем, проверяют регулировку конических роликовых подшипников с одновременным контролем зацепления конических шестерен.

Неисправности ведущих мостов обнаруживаются в основном по чрезмерно шумной работе и повышенной температуре корпуса (невозможно прикоснуться рукой). Перегрев происходит из-за недостатка или избытка масла, неправильной регулировки конических подшипников и тормозов. Повышенный шум при движении бывает вследствие изнашивания подшипников и зубьев конических шестерен. Если шум возникает только на поворотах — изношены или повреждены детали дифференциала.

Утечка масла из корпусов наблюдается при повышенном его уровне, загрязнении сапуна, изношенных или поврежденных уплотнениях.

Если трактор не удается круто повернуть - изношены или замаслены тормоза. При неисправных тормозах солнечных шестерен гусеничный трактор уводит в сторону.

СОДЕРЖАНИЕ ОТЧЁТА

- 1. Назначение и принцип действия прибора КИ-5454.
- 2. Порядок диагностирования с помощью прибора КИ-5454.
- 3. Записать измеренную величину относительного износа зубьев шестерён на каждой передаче, сравнить их с допускаемыми и предельными значениями и сделать заключение о техническом состоянии КПП.
- 4. Порядок диагностирования с помощью приспособления КИ-4850 и угломера КИ-13909.
- 5.Записать полученные результаты, сравнить их с допускаемыми значениями и сделать заключение о техническом состоянии переднего и заднего моста трактора МТЗ-82.

7 ОСНОВНЫЕ ПРАВИЛА ЭКСПЛУАТАЦИИ И ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ МЕХАНИЗМОВ СИЛОВОЙ ПЕРЕДАЧИ

Работоспособное состояние коробок передач характеризуется следующими признаками:

- шестерни и зубчатые муфты легко и без скрежета входят в зацепление на полную длину зубьев, надежно фиксируются во включенном и выключенном положениях;
 - невозможно одновременное включение двух передач;
 - при работе отсутствуют стуки и утечки масла;
 - нагрев не превышает допустимого уровня;
- в гидросистемах коробок с фрикционными гидроподжимными муфтами устойчиво поддерживается нормальное давление.

Переключать передачи можно только после выключения сцепления.

При ТО-1 проверяют уровень масла. Делают это не раньше чем через 30 мин после остановки. Через одно ТО-2 в тракторах Т-150К и К-701 снимают, промывают в дизельном топливе и продувают сжатым воздухом масляные фильтры, установленные в линиях нагнетания гидросистем коробок. При сезонном техническом обслуживании в тракторах и через одно ТО-2 в автомобилях, если нет иных указаний завода-изготовителя, заменяют масло в коробках. Масло сливают сразу после работы, пока оно не остыло. Очищают магниты пробок, промывают фильтры и сапуны и заливают масло до установленного уровня.

Ведущий мост работоспособен, если при движении шум и нагрев не превышают определенных уровней, нет утечек масла через уплотнения наружу и к тормозам. В колесных тракторах важный дополнительный признак работоспособности — надежное автоматическое блокирование дифференциала, а в пропашных с передним ведущим мостом - еще и своевременное автоматическое включение и выключение его.

Работоспособность ведущих мостов гусеничных тракторов характеризуется также устойчивостью прямолинейного движения и возможностью совершать повороты, прилагая к рычагам и педалям усилия, не превышающие установленные нормы. Поддержание работоспособного состояния обеспечивается соблюдением правил использования и технического обслуживания.

При движении надо следить, чтобы в мостах не появлялся посторонний шум, не было утечек масла, и периодически на ощупь проверять температуру деталей. Блокировать дифференциал принудительно следует лишь при необходимости и обязательно выключать блокировку на поворотах.

При ТО-2 в тракторах проверяют и при необходимости регулируют тормоза, проверяют уровень масла в картерах и, 'если нужно, доливают. Делают это не раньше чем через 30 мин после остановки. В ведущих мостах автомобилей уровень масла проверяют при ТО-1 и одновременно подтягивают гайки крепления полуосей.

При ТО-3 проверяют и, если нужно, промывают фрикционные накладки тормозов, руководствуясь инструкцией завода-изготовителя. Если наблюдается интенсивное замасливание накладок, проверяют состояние уплотнений, прочищают вентиляционные отверстия или промывают сапуны.

сации их как в нейтральном, так и во включенном положении.

Механизм блокировки не позволяет переключать передачи без предварительного полного выключения сцепления. Кроме того, запирая фиксаторы, он обеспечивает более надежную фиксацию кареток.

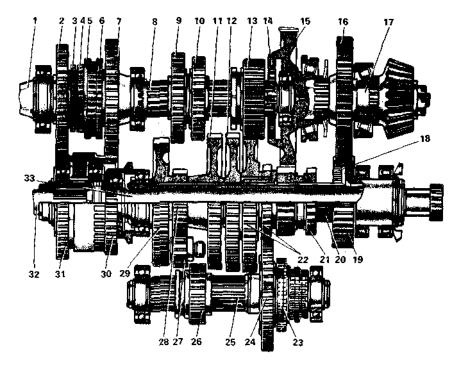


Рисунок 1.1 -Коробка передач трактора МТЗ-80, МТЗ-82

1-вал сцепления; 2- ведущая шестерни понижающего редуктора; 3, 4 и 6 дополнительные зубчатые венцы для включения понижающего редуктора; 5- подвижная губчатая муфта; 7- ведомая шестерня понижающего редуктора; 8, 17 и 20- первичный, вторичный и промежуточный валы; 9, 10, и 13 каретки V и VIII, IV и VII и III, VI и IX передач; 11 и 12- ведомые шестерни I, II, IV, VII, III и VI передач; 14 и 18-внутренние зубчатые венцы для включения IX (прямой) передачи и второй ступени редуктора; 15 и 16 - ведомые шестерни нерпой и второй ступеней редуктор; 19- ведущая шестерня второй ступени редуктора; 21 и 23- каретки включения редуктора и ходоуменьшитель; 22 и 27- промежуточные шестерни; 24- ведомая шестерня привода вала I и II передач; 25- вал I и II передач; 26 каретка включения I и II передач и заднего хода; 28 и 29- ведомые шестерни заднего хода, V и VIII передач; 30 и 31-промежуточные шестерни понижающего редуктора; 32- вал привода ВОМ.

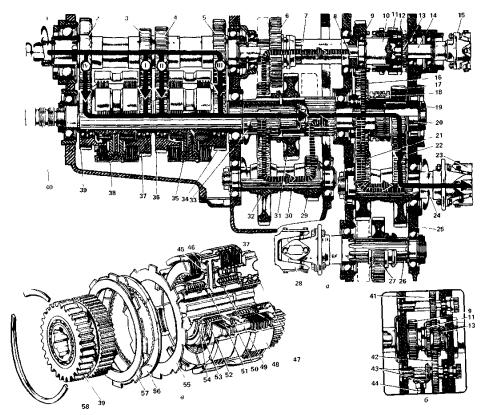


Рисунок 1.2- Коробка передач и раздаточная коробка трактора Т-150К:

а - схема; б - схема привода насосов; в - гидроподжимная муфта; 1 - первичный вал; 2 и 39 - шестерни включения IV передачи; 3 и 37 - шестерни включения I передачи; 4 и 36 - шестерни 11 передачи; 5 и 34 - шестерни 111 передачи; 6 - шестерня заднего хода; 7 - вал заднего хода; 8 - вал привода ВОМ; 9 - шестерня вала заднего хода; 10 шлицевая муфта; 11 - ведущая шестерня привода насосов; 12 и 13 - зубчатые венцы; 14 - выходной вал привода ВОМ; 15, 23 и 28 - карданные шарниры; 16 и 21 - шестерни третьей ступени редуктора; 17 и 22 - шестерни второй ступени редуктора; 18 - зубчатая муфта; 19 - зубчатая втулка; 20 - первичный вал раздаточной коробки; 24 - вал привода заднего моста; 25 - корпус раздаточной коробки; 26 - вал привода переднего моста; 27 - шестерня включения переднего моста; 29 - промежуточная шестерня редуктора; 30 - вал редуктора; 31 - шестерня включения первой ступени редуктора; 32 и 33 - промежуточная и ведущая шестерни первой ступени редуктора; 35 и 38 - гидроподжимные муфты; 40 - вторичный вал; 41, 42 и 43 - шестерни привода насосов гидросистем; 44 - вал привода насоса гидросистемы коробки передач; 45 - клапан; 46 - поршень; 47 - шлицевая муфта; 48 - барабан гидроподжимной муфты; 49 и 50 - резиновое и чугунное уплотнительные кольца; 51 - масляный канал; 52 - пружина; 53 - упорное кольцо; 54 и 58 - стопорные кольца; 55, 56 и 57 - ведомый, ведущий и упорный диски.

6 ОПРЕДЕЛЕНИЕ СУММАРНОГО БОКОВОГО ЗАЗОРА В МЕХАНИЗМАХ СИЛОВОЙ ПЕРЕДАЧИ.

Суммарный боковой зазор кинематической цепи силовой передачи определяют с помощью угломера КИ-13909 ГОСНИТИ (рисунок 6.1.), который состоит из корпуса 1 с магнитами для крепления угломера на ведущем колесе или полуоси, жидкостной ампулы 2 с пузырьком воздуха и шкалы 3.

Суммарный зазор в механизмах силовой передачи трактора МТЗ-80 проверяют в такой последовательности:

- поддомкрачивают одно из ведущих колес трактора;
- закрепляют на полуоси угломер КИ-13909;
- сначала определяют суммарный зазор всей кинематической цепи на каждой передачи, затем зазор в каждой конечной передачи. Для этого при прокрутке ведущего колеса затормаживают противоположную передачу, обеспечив этим поворот только шестерни проверяемой конечной передачи;
- в начале, включают проверяемую передачу, прокручивая колесо в одну из сторон, полностью выбирают зазор и устанавливают пузырек с воздухом на 0 деление шкалы;
- прокручивают колесо в обратную сторону (до полностью выбранного зазора) и по отклонению пузырька с воздухом по шкале угломера определяют суммарный боковой зазор;
 - максимальный момент прокрутке колеса должен быть равен 100-120 мм. Допускаемое значения зазоров у тракторов приведены в таблице 6.1.

Если суммарный зазор превышает допускаемой значение хотя бы на одной из передач, вскрывают коробку передач и задний мост, осматривают шестерни, измеряют износ зубьев шестерни и осевой зазор подшипника.

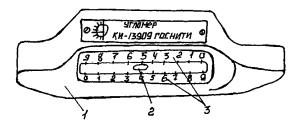


Рисунок 6.1- Измерение суммарного бокового зазора в силовой передачи колёсного трактора угломером КИ-13909

Таблица 6.1- Допускаемые суммарные угловые зазоры в механизмах силовой передачи трактора, в градусах.

Марка		Передачи							
трактора	1	2	3	4	5	6	7	8	Конечная
									передача
ДТ-75М, ДТ-175	7	7	7,3	7,3	7	7	-	-	4,3
MT3-80, MT3-	6	7	6	6	6	7	7	7	2
82/82.1									
T-40AM	4	4,2	4,3	5	5,2	6	-	-	3

5 НАЗНАЧЕНИЕ, УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ПРИСПОСОБЛЕНИЯ КИ-4850 ГОСНИТИ

5.1 Назначение и устройство КИ-4850.

Приспособление КИ-4850 предназначено для проверки осевого зазора в подшипниках силовой передачи тракторов.

Приспособление КИ-4850 (рисунок 5.1) состоит из индикатора 1 часового типа, штатива 2 и стойки 3 с электромагнитом 4. Электромагнит подключают к сети и устанавливают на раму или корпусную деталь трактора. Шток 5, связанный с ножкой индикатора, подводят так, чтобы он упирался в вал, ось или корпус подшипника. Перемещая вал или ось из одного крайнего положения в другое, фиксируют величину зазора с помощью индикатора.

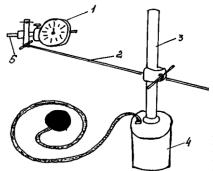
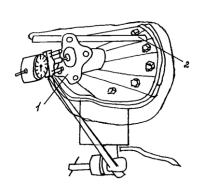



Рисунок 5.1- Приспособление КИ-4850 ГОСНИТИ для измерения зазоров в подшипниках

3.2. Технология проверки осевого зазора в подшипниках силовой передачи

Чтобы проверить осевой зазор в подшипниках ведущей шестерни главной передачи ведущих мостов тракторов K-701 и T-150K, а также переднего ведущего моста трактора МТЗ-82 (рис. 3.2) отсоединяют от фланца 1 стакана ведущей шестерни конец карданного вала, устанавливают приспособление КИ-4850 и упирают шток индикатора в торец хвостовика ведущей шестерни с натягом 2...3 мм. Перемещая ломиком 2 шестерню в осевом направлении, по показаниям индикатора определяют зазор в

подшипниках. Шариковые подшипники силовой передачи тракторов подлежат замене при осевом зазоре валов, превышающем 0,5 мм. Роликовые конические подшипники коробки передач и главной передачи, пригодные к работе, регулируют при зазоре, превышающем 0,3 мм.

Рисунок 5.2- Измерение осевого зазора в подшипниках ведущей шестерни главной передачи переднего моста трактора МТЗ-82

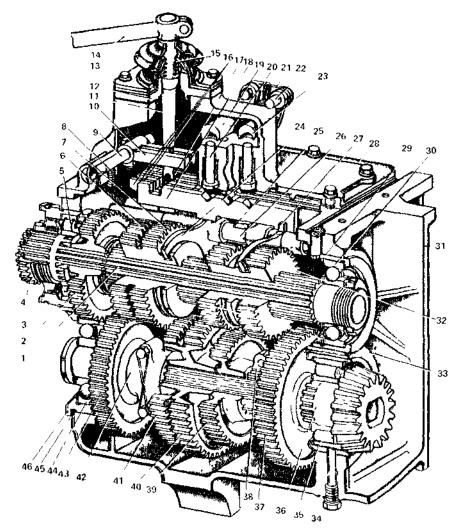


Рисунок 1.3 а- Коробка передач трактора ДТ-75МВ:

1-первичный пал; 2, 68 и 71 -шестерни постоянною зацепления, 3 и 29- стаканы; 4 - зубчатая муфта; 5, 30, 35, -14, 58. 59, 70 и 72 полтинники; 6 и 7 - каретка III и IV передач, 8- направляющий винт; 9 -валик переключения; 10- направляющая вилка; 11- внутренний рычаг переключения; 12 -фланец; 13 -чека; 14 наружный рычаг переключения, 15-- пружина; 16 и 17 разделительная и боковая планки; 18 ползуны; 19 и 23 - валики блокировки; 20 и 47 - фиксаторы; 21 - планка блокировки; 22 палец блокировки; 24, 27, 53, 64 и 65 - вилки переключения; 25 опорная пластина; 26 и 54 - направляющие оси вилок; 28- крышка; 31 корпус; 32 и 33 каретки II и I передач;

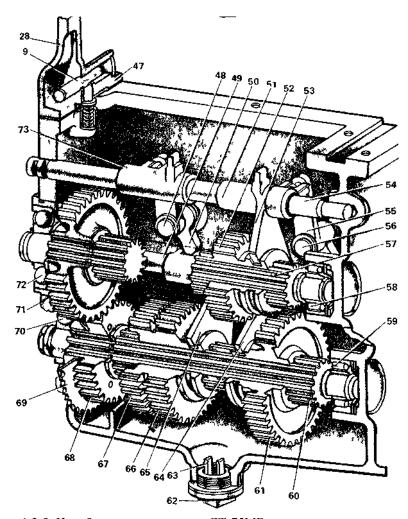


Рисунок 1.3 б- Коробка передач трактора ДТ-75МВ:

34 - установочный винт; 36 - вторичный вал; 37 - шестерня II передачи; 38 и 42- распорные хомуты; 39, 40 и 41 - шестерни VI и I передач, заднего ходи, IV и VI передач; 43 - шестерня III и V передач; 45 - регулировочные прокладки; 46 - стакан, 48 и 56 -пальцы; 49 направляющая ось вилок; 50 и 55 - рычаги; 41 - ступица вилки; 52 - каретка заднего хода; 57 - вал заднего хода; 60- дополнительный вал; 61 - каретка VII передачи; 62 пробка; 63 - магнит; 66 и 67 каретка VI и V передач; 69 - маслоразбрызгивающая шайба; 73- поводок.

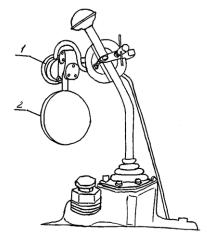


Рисунок 4.1-Установка первичного преобразователя устройства КИ-5454 на рычаге переключения передач

- 1- потенциометр
- 2- противовес

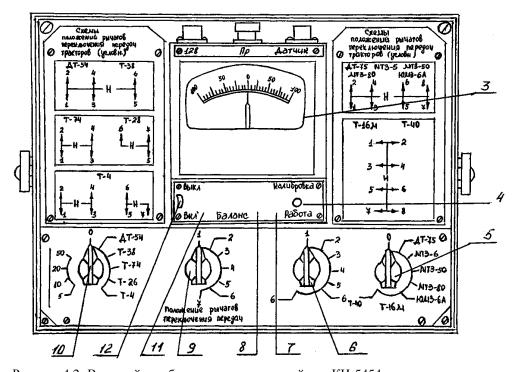


Рисунок 4.2- Внешний вид блока сравнения устройства КИ-5454

приведенной в таблице 4.1, переключатель 5 - в нулевое положение.

В случае диагностирования трактора, марка которого на панели прибора обозначена справа, переключатель 5 устанавливают в положение, обозначающее марку этого трактора, переключатель 6 - в положение, соответствующее условному обозначению диагностируемой передачи согласно схеме положений рычага коробки передач, приведенной в таблице 4.1, переключатель 1-е нулевое положение.

Выключают сцепление, включают диагностируемую передачу и, удерживая рычаг переключения передач во включенном положении, устанавливают ручку 11 - в положение, при котором стрелка микроамперметра установится против деления «100». Включают передачу, включают сцепление и плавно перемещают рычаг в сторону включения диагностируемой передачи до начала соприкосновения зубьев шестерен торцами, определяемого по легкой вибрации рычага и шуму сопрягающихся зубьев. Не меняя положения рычага, определяют по показанию микроамперметра величину относительного износа зубьев по длине

Аналогично определяют износ остальных шестерен непостоянного зацепления. Предельные и допустимые значения параметров износного состояния шестерен

зубьев приведены в таблице 4.2.

Таблица 4.1- Условные обозначения передач на панели устройства КИ-5454 ГОСНИТИ и соответствующие им передачи тракторов.

Марка	Условные обозначения передач										
трактора	1	2	3	4	5	6	7	8			
	Пер	Передачи трактора, соответствующие условным обозначениям									
ДТ-75	Зад.	7	6	5	3	4	1	2			
ДТ-75М	ход										
MT3-80	1	2	5,8	4,7	3,6	9	Зад.	1,2			
MT3-82/82.1	пониж.	пониж.					ход				

Таблица 4.2- Допускаемые нормативные значения параметров зубчатых зацеплений переключаемых пар шестерён коробок передач

Марка		Условные обозначения передач на панели устройства КИ-5454 и														
трактора		износ соответствующих зацеплений в % номинальной длины зубьев														
	доп	пред	доп	пред	доп	пред	доп	пред	доп	пред	доп	пред	доп	пред	доп	пред
	1 2			2	()	3	4	1	5		6		7		8	
ДТ-75	32	49	52	74	49	70	47	67	42	60	44	63	40	57	43	61
ДТ-75М	32	49	52	74	49	70	47	67	42	60	40	63	40	57	43	61
MT3-80	-	-	ı	-	43	61	39	56	37	53	ı	-	14	20	14	20
MT3-	-	-	-	-	43	61	39	56	37	53	-	-	14	20	14	20
82/82.1																
ЮМ3-6А	-	-	-	-	14	20	15	21	16	23	14	20	19	27	14	20
T-40AM	15	21	41	58	14	20	32	45	39	56	40	57	20	29	16	23

С помощью раздаточной коробки через карданную передачу подводится крутящий момент к переднему ведущему мосту, обеспечивается его автоматическое, а при необходимости и принудительное включение и выключение.

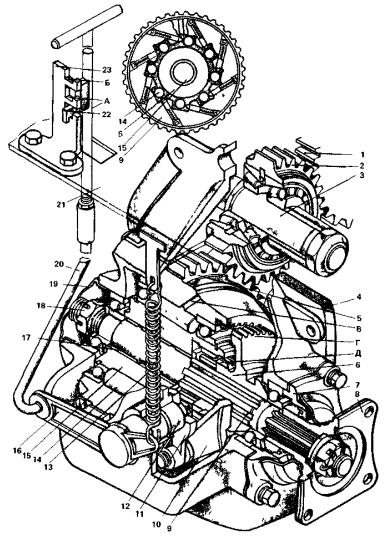


Рисунок 1.4- Раздаточная коробка трактора МТЗ-82:

1 - шестерня вторичного вала коробки передач; 2 - промежуточная шестерня; 3 - ось; 4 - корпус; 5 - шестерня - наружная обойма муфты свободного хода; 6 - муфта переключения; 7 и 19 крышки; 8 - фланец; 9 - вал; 10 - вилка; 11 - рычаг вилки; 12- валик управления; 13- пружина; 14 - ролик; 15- внутренняя обойма обгонной муфты; 16 - рычаг управления; 17- втулка; 18 - гайка; 20 тяга; 21 - пол кабины; 22 - упор; 23 - стойка.

2 НАЗНАЧЕНИЕ И УСТРОЙСТВО ВЕДУЩЕГО МОСТА

Мост автомобили и колесного трактора - это агрегат, который опирается на колеса и воспринимает все виды усилий, действующих между колесами и остовом. Если в его состав входят механизмы, с помощью которых подводится крутящий момент к колесам, то такой мост называют ведущим.

Агрегат гусеничного трактора, в котором объединены механизмы, передающие крутящий момент от коробки передач ведущим колесам (звездочкам), по аналогии тоже называют ведущим мостом, хотя он непосредственно и не опирается на гусеницы.

Задние мосты сельскохозяйственных тракторов и автомобилей - ведущие. Чтобы уменьшить буксование и улучшить проходимость, у некоторых автомобилей и колесных тракторов крутящий момент подводится и к передним колесам, т. е. и передний мост делают ведущим.

Конические шестерни в ведущих мостах, передавая вращение под прямым углом, в то же время уменьшают его частоту и соответственно увеличивают крутящий момент. Преимущественно используют конические шестерни со -спиральными зубьями, так как они работают более бесшумно и меньше изнашиваются, чем прямозубые.

Дифференциал. На поворотах и при движении по неровной поверхности правое и левое ведущие колеса проходят различные пути. Если они будут вращаться с одинаковой частотой, это вызовет их проскальзывание и усиленное изнашивание шин и трущихся деталей трансмиссии. Колеса должны иметь возможность вращаться с различной частотой и в тех случаях, когда их радиусы качения оказываются различными (вследствие неравномерной нагрузки, неодинакового давления в шинах и различного их износа). Поэтому в ведущих мостах автомобилей и колесных тракторов предусмотрен механизм, называемый дифференциалом, который позволяет передавать ведущим колесам вращение с различной частотой.

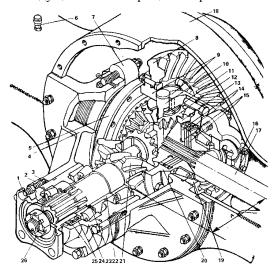


Рисунок 2.1- Редуктор заднего моста трактора Т- 150К:

1- фланец; 2- стакан; 3 и 23- регулировочные прокладки; 4- корпус; 5 и 20 фланцы корпуса дифференциала; 6- сапун; 7- крышка подшипника; 8 и 21- ведомая и ведущая конические шестерни; 9- корпус дифференциала; 10- ось сателитов;11- опорная шайба; 12- сателлит; 13 - полуосевая шестерня; 14 и 15- ведущий и ведомый диски; 16-стопорная пластина; 17- полуось; 18- картер; 19- регулировочная гайка; 22- распорная втулка; 24 крышки; 25 сальник; 26 гайка.

4 НАЗНАЧЕНИЕ, УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ ПРИБОРА КИ-5454

4.1 Назначение и устройство прибора КИ-5454

Относительный износ зубчатых пар (в процентах номинальной длины зубьев) определяют с помощью устройства КИ-5454 ГОСНИТИ, состоящего из первичного измерительного преобразователя (рисунок 4.1) блока сравнения (вторичного измерительного прибора) (рисунок 4.2) и соединительного шнура.

Измерительный преобразователь (рисунок 4.1) служит для формирования электрического сигнала, пропорционального углу поворота рычага переключения передач. Основная составная часть преобразователя - потенциометр 1, который состоит из неподвижного корпуса, жестко закрепляемого на рычаге переключения передач и ползуна, подключенных к электрической цепи блока сравнения. Благодаря наличию противовеса 2 положение корпуса при перемещении рычага переключения передач остается неизменным, а ползун поворачивается относительно корпуса на угол, пропорциональный величине перемещения рычага. Вследствие этого изменяются сопротивление потенциометра и величина тока, поступающего в блок сравнения.

Блок сравнения служит для сравнения величины сопротивления первичного преобразователя с эталонным сопротивлением, находящимся внутри блока, и регистрации измеряемой величины.

4.2 Технология диагностирования с помощью устройства КИ-5454 ГОСНИТИ.

Устанавливают трактор на равной горизонтальной площадке, останавливают дизель и затормаживают движитель. Отключают механизм блокировки коробки передач и устанавливают блокировочный валик в нерабочее положение, обеспечивающее включение передачи при включенном сцеплении.

Закрепляют первичный преобразователь на рычаге переключения передач так, чтобы консоль первичного преобразователя располагалась приблизительно горизонтально и перпендикулярно плоскости движения рычага в нейтральном положении (см. рисунок 4.1).

Убедившись, что тумблер 12 находится в положении «Выкл» (см. рисунок 4.2), тумблер 4 в положении «калибровка», переключатель 10 - в положении 0...50, а переключатель 5 - в нулевом положении, подключают блок сравнения к первичному преобразователю. Пускают дизель и устанавливают максимальную частоту вращения коленчатого вала. Переводят тумблер 12 в положение «Вкл» и регулируют напряжение питания ручкой 7 так, чтобы стрелка микроамперметра 3 находилась против деления «100». Устанавливают тумблер 4 в положение «Работа», а ручку 11 - в положение, при котором стрелка микроамперметра переместится на нулевое деление.

При диагностировании трактора, марка которого на панели прибора обозначена слева, устанавливают переключатель 10 в положение, обозначающее марку данного трактора, переключатель 9 - в положение, соответствующее условному обозначению диагностируемой передачи согласно схеме положений рычага коробки передач,

Таблица 1.1- Внешние признаки неисправной работы механизмов силовой передачи трактора и необходимые регулировочные операции

Внешние при-	Структурные изменения взаимодей-	Диагностические и ре-
знаки.	ствующих элементов.	гулировочные операции
Муфта сцепле-	Отсутствует свободный ход педали,	Отрегулировать муфту
ния пробуксо-	замаслены диски, изношены наклад-	сцепления, помыть
вывает.	ки.	муфту, заменить
		накладки.
Муфта сцепле-	Увеличен свободный ход педали, по-	Отрегулировать сво-
ния не полно-	короблен ведомый диск, заедание	бодный ход, выправить
стью включает-	шлицев ступицы ведомого диска на	ведомый диск, зачи-
ся.	валу.	стить шлицы вала и
		ступицы.
Не включаются	Износ и забоины на шлицах валов и в	Зачистить забоины
передачи.	зубьях шестерен.	шлицев валов, заменить
		изношенные детали.
Нагрев коробки	Низкий уровень масла в картере.	Проверить и при необ-
передач.		ходимости долить мас-
		ло.
Стуки в коробке	Забиты торцы зубьев шестерен, из-	Проверить износ зубьев
передач.	ношены шестерни и подшипники.	шестерен и при необхо-
		димости заменить ше-
		стерни и подшипники.
Стук в конечной	Большой зазор в зацеплении шесте-	Отрегулировать зазор.
передаче.	рен.	
Нагрев корпуса	Нарушен зазор в конических подшип-	Отрегулировать зазоры,
ведущего моста	никах или между коническими ше-	долить масло.
или повышен-	стернями. Мало масла в корпусе.	
ный шум.		
Трактор уводит	Нет свободного хода у рычагов	Отрегулировать сво-
в сторону	управления, замаслились или износи-	бодный ход, промыть
	лись накладки лент тормозов солнеч-	накладки или их заме-
	ной шестерни, неодинаковое натяже-	нить, отрегулировать
	ние гусениц или их износ.	натяжение гусениц.
Трактор не вы-	Нарушена регулировка остановочных	Отрегулировать управ-
полняет крутые	тормозов, замаслены или изношены	ление остановочным
повороты	накладки.	тормозом, промыть или
		заменить накладки.

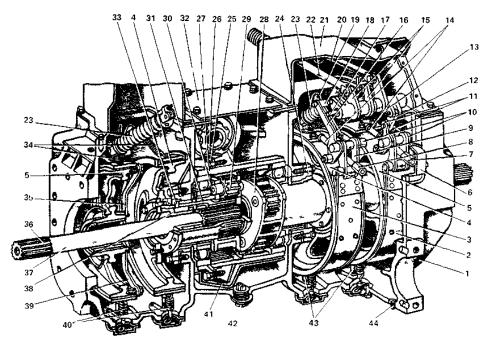


Рисунок 2.2- Ведущий мост трактора ДТ-75МВ

1 корпус; 2 и 3 - тормозные ленты; 4 - шкив тормоза солнечной шестерни; 5 - шкив остановочного тормоза; 6, 21 и 32 - крышки; 7 и 8 - регулировочные гайки; 9, 12 и 18- серый; 10- пальцы; 11 и 13 - рычаги механизма остановочного тормоза: 14, 19, 20 и 22 - тяги; 15 и 16 -рычаги механизма тормоза солнечной шестерни; 17 - ось рычага; 23, 34 и 40 - пружины; 24 - стакан; 25 - регулировочные прокладки; 26- ведомая коническая шестерня; 27 - барабан коронных шестерен; 28 водила; 29 - сателлит; 30-ось сателлита; 31 солнечная шестерня; 33 сальник; 35 и 39 запорные планки; 36-ведущая шестерня конечной передачи; 37 - вал (полуось); 38 - уплотнение; 41 - маслоуспокоительный кожух; 42 и 44 пробки; 43 опорные регулировочные винты.

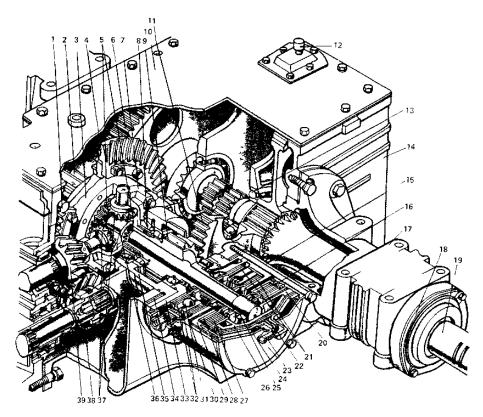


Рисунок 2.3- Задний мост трактора МТЗ-80 и МТЗ-82:

1- вал привода левого тормоза; 2 и 9- ведущие шестерни конечных передач; 3- корпус дифференциала; 4- ведомая коническая шестерня; 5 -- полуосевая шестерня; 6 и 11- ведомые шестерни конечных передач; 7- крышка корпуса дифференциала; 8-конический роликовый подшипник; 10- крышка корпуса заднего моста: 12- сапун; 13- шариковый подшипник; 14- корпус заднего моста; 15- кожух тормоза; 16- пружина; 17- рукав полуоси; 18- крышка; 19- полуось; 20- ведущий диск; 21- тормозные диски; 22- диафрагма; 23 и 24- крышки; 25- блокировочный вал; 26- нажимной диск; 27 и 28- диски муфты блокировки дифференциала; 29- корпус муфты блокировки дифференциала; 31- шарик; 32- нажимные диски; 33- кожух муфты блокировки дифференциала; 31- шарик; 32- нажимные диски; 33- крышка стакана; 34- регулировочные прокладки; 35- стакан; 36- крестовина; 37- сателлиты; 38- муфта переключения ВОМ; 39- ведущая коническая шестерня.

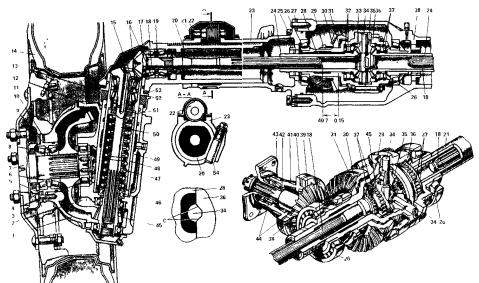


Рисунок 2.4- Передний ведущий мост трактора МТЗ-82

1, 17, 21, 23 и 36- крышки; 2 и 45 ведомая и ведущая шестерни коночной передачи; 3- грязевеки; 4, 8, 16, 26, 44 и 46- подшипники; 5- корпус уплотнения; 6, 10, 15, 19, 27, 31, 40, 42 и 53- регулировочные кольца и прокладки; 7- ведомый вал коночной передачи с фланцем для крепления колеса; 9 и 41- стаканы подшипников; 11- диск колеса; 12- корпус конечной передачи; 13- стакан с уплотнением; 14- ведущее колесо; 18- полуоси; 20- выдвижной корпус; 22- червяк; 24- полуосевые шестерни; 25- обойма в сборе с сальниками; 28- корпус дифференциала; 29- круглая гайка; 30 и 39- ведомая и ведущая конические шестерни; 32 и 37- фрикционные диски; 33- нажимная чашка; 34- оси сателлитов; 35- сателлит; 38- корпус моста; 43- фланец; 47- пружина; 48- шкворневая труба; 49- гильза; 50- вертикальный вал; 51- упорная шайба в сборе с уплотнением; 52- упорный фланец; 54- клиповый болт.

3 ОСНОВНЫЕ НАРУШЕНИЯ НОРМАЛЬНОЙ РАБОТЫ СИЛОВОЙ ПЕРЕДАЧИ ТРАКТОРА

В процессе эксплуатации интенсивному изнашиванию подвергаются фрикционные накладки сцепления, тормозные ленты, зубья шестерен и шлицы валов. Износы вызывают нарушения регулировок, потери мощности двигателя, а следовательно и ухудшение эксплуатационных показателей трактора. Признаки нарушения нормальной работы силовой передачи приведены в таблице 1.1.