ФГБОУ ВО «Брянский государственный аграрный университет»

Инженерно-технологический институт

Кафедра технических систем в агробизнесе, природообустройстве и дорожном строительстве

Кузнецов В. В.

Определение основных параметров соломотряса

Методическое пособие и рабочая тетрадь к практическому занятию по дисциплине «Сельскохозяйственные машины» для студентов ВУЗов очного и заочного обучения по направлению бакалавриат 35.03.06 «Агроинженерия», профиль образовательной программы «Технические системы в агробизнесе»

Брянск 2018

УДК 631.361.2.025 (076) ББК 40.72 К 89

Кузнецов, В. В. Определение основных параметров соломотряса: методическое пособие и рабочая тетрадь / В. В. Кузнецов. - Брянск: Изд-во Брянский Γ AУ, 2018. — 16 с.

Методическое пособие в форме рабочей тетради к практическому занятию «Определение основных параметров соломотряса» по дисциплине «Сельскохозяйственные машины» для студентов ВУЗов очного и заочного обучения по направлению бакалавриат 35.03.06 «Агроинженерия», профиль образовательной программы «Технические системы в агробизнесе» помогает студенту получить практические навыки по компетенциям ПК-2, ПК-4, ПК-5, ПК-8 рабочего плана дисциплины.

Рецензент: к.т.н., доцент С. И. Будко

Рекомендовано к изданию методической комиссией инженерно-технологического института от 21.02.2018 года, протокол N27.

- © Кузнецов В.В., 2018
- © Брянская ГАУ, 2018

Определение основных параметров соломотряса

Цель работы. Проанализировать исходные данные. Приобрести практические навыки исследования процесса работы соломотряса, оценки качества технологического процесса и методов подготовки к профессиональной эксплуатации.

Теоретическая часть

Соломотрясы предназначены для выделения зерна из соломы и направления его на очистку, а также для подачи соломы из молотильного аппарата в копнитель. В существующих комбайнах получили распространение двухвальные клавишные соломотрясы, все точки клавиш которых совершают движение по окружности. Двухвальные клавишные соломотрясы бывают четырёх и пятиклавишные в зависимости от ширины молотилки. При ширине молотилки до 1200 мм применяется четырёхклавишный, а при 1500 мм и более - пятиклавишный.

Качественные показатели работы соломотряса во многом определяются его кинематическими параметрами. Существенное влияние на выделение зерна оказывает скорость движения соломы по соломотрясу, которая во многом определяется показателем К кинематического режима:

$$K = \frac{\omega^2 r}{g} \,, \tag{1}$$

где ω - угловая скорость вращения коленчатого вала, с⁻¹; ρ - радиус колена вала, м. $g=9.8~{\rm m/c}^2$

Для четырёхклавишного соломотряса K = 2,2...2,7, для пятиклавишного -1,1 1,5.

Практическая часть

Содержание работы. Определить ширину B, длину Λ соломотряса, скорость вращения коленчатого вала на основании исходных данных. Построить траекторию движения подброшенной массы, определить фазу соударения и оценить её оптимальность.

Исходные данные. К исходным данным относятся:

- θ секундная подача массы в молотильный аппарат, кг/с;
- δ содержание зерна в хлебной массе;
- ε коэффициент сепарации зерна декой;
- L_6 ширина молотильного аппарата, м;
- $\gamma_{\rm c}$ объёмная масса соломы, кг/м³;
- К- показатель кинематического режима;
- r- радиус коленчатого вала, м;
- α- угол наклона клавиши к горизонту, град;
- Z- число клавиш рассматриваемого соломотряса.

Порядок выполнения работы

Определяют ширину соломотряса по формуле

$$B = 1,1\Lambda_{\mathbf{6}} \tag{2}$$

B =

Определяют скорость вращения коленчатого вала по формуле

$$\omega = \sqrt{\frac{kg}{r}} \,, \tag{3}$$

g = 9.8 m/c

 $\omega =$

Таблица 1 - Варианты исходных данных

No	θ,	δ	2	$\gamma_{c,}$	4	К	r	01	7
вари- анта	кг/с	0	ε	кг/м ³	$arLambda_{ ilde{o}}$	Λ	,	α	Z
1	2	3	4	5	6	7	8	9	10
1.	4,0		0,90			2,2	0,050	6	
2.	4,5	0,35	0,85	22	1,2	2,4	0,050	8	4
3.	5,0		0,80			2,3	0,055	10	
4.	4,8		0,80			2,5	0,052	5	
5.	3,5		0,90			2,6	0,048	6	
6.	4,0	0,25	0,85	20	1,4	2,5	0,050	9	4
7.	5,0		0,80			2,4	0,054	5	
8.	5,2		0,80			2,3	0,080	8	
9.	4,3		0,85			2,4	0,048	9	
10.	4,6	0,25	0,83	15	1,2	2,6	0,050	8	4
11.	3,5		0,80			2,7	0,045	8	
12.	3,8		0,87			2,2	0,050	6	
13.	6,0		0,82			2,6	0,055	5	
14.	5,3	0,30	0,80	20	1,4	2.5	0,050	8	4
15.	4,4		0,84			2,3	0,052	6	
16.	3,9		0,87			2,7	0,050	9	
17.	3,7		0,88			2,6	0,045	10	
18.	4,1		0,84			2,4	0,050	6	
19.	4,9	0,30	0,86	18	1,2	2,3	0,050	5	4
20.	5,2		0,80			2,2	0,052	8	
21.	5,5		0,80			2,4	0,055	6	
22.	5,1		0,80			2,3	0,050	8	
23.	4,0	0,35	0,85	20	1,4	2,6	0,048	10	4
24.	4,5		0,85			2,5	0,052	6	
25.	4,2		0,82			2,4	0,043	8	

Определяют перемещение S соломы вдоль клавиши за одно подбрасывание. Для этого выбирают начало координат в точке 0 (рис.1) и направляют ось X вдоль клавиши (построения выполняют на координатной бумаге формата A4 и вклеивают в тетрадь). Тогда фаза подбрасывания определится из условия

$$\sin \omega t_1 = -\frac{\cos \alpha}{K} \times C \tag{4}$$

$$\sin \omega t_1 =$$

где C - коэффициент, учитывающий запаздывание подбрасывания, обусловленное упругостью слоя соломы.

Коэффициент C можно определить по величине K из графика (рис. 2). После подбрасывания солома будет совершать свободный полёт. Траектория её движения вдоль осей X и Y будет

$$X = -r\cos\omega t_0 + (\omega r\sin\omega t_0)t - \frac{gt^2}{2}\sin\alpha \tag{5}$$

$$Y = r\sin\omega t_0 + (\omega r\cos\omega t_0)t - \frac{gt^2}{2}\cos\alpha \tag{6}$$

Задаваясь значениями времени t с интервалом $\Delta \tau = 0.03...0.04$, рассчитывают координаты X и Y падения массы и расчёты сводят в таблицу 2.

$$X_1 =$$

$$Y_1 =$$

Расчёт ведут до двух отрицательных значений Ү.

При расчётах принимают $\varphi_i = \omega t_i$

По полученным значениям X и Y построить траекторию движения соломы (рисунок 1).

Таблица 2 - Значения координат полёта массы

	$\tau_0 = 0$	$ au_1 = \Delta au$	$\tau_2 = 2\Delta \tau$	$\tau_3 = 3\Delta \tau$	$\tau_4 \!= 4\Delta \tau$	$\tau_5 = 5\Delta \tau$
X						
Y						
ω						

Продолжение таблицы 2

$\tau_6 = 6\Delta \tau$	$\tau_7 = 7\Delta \tau$	$\tau_8 = 8\Delta \tau$	$\tau_9 = 9\Delta \tau$	$\tau_{10} = 10 \Delta \tau$	$\tau_{11} = 11\Delta \tau$
	$ au_6=6\Delta au$	$ au_6 = 6\Delta au$ $ au_7 = 7\Delta au$	$ au_6=6\Delta au$ $ au_7=7\Delta au$ $ au_8=8\Delta au$	$\tau_6 = 6\Delta \tau \tau_7 = 7\Delta \tau \tau_8 = 8\Delta \tau \tau_9 = 9\Delta \tau$	$\tau_6 = 6\Delta\tau \tau_7 = 7\Delta\tau \tau_8 = 8\Delta\tau \tau_9 = 9\Delta\tau \tau_{10} = 10\Delta\tau$

Во время свободного полёта соломы, точка клавиши, с которой был осуществлён подброс, будет совершать круговое движение и занимать положение 1^{\prime} , 2^{\prime} , 3^{\prime} и т.д.

Точки 1^{\prime} , 2^{\prime} , 3^{\prime} и т.д. можно определить, откладывая угол φ_i от положения колена вала в момент подбрасывания. Когда ординаты одновременных точек в которых находится солома и клавиша, будут одинаковы (на рис.1, точки 6^{\prime} и 6), произойдёт встреча соломы с клавишей. Если ординаты одновременных точек не совпадают, то момент встречи уточняют путём интерполяции.

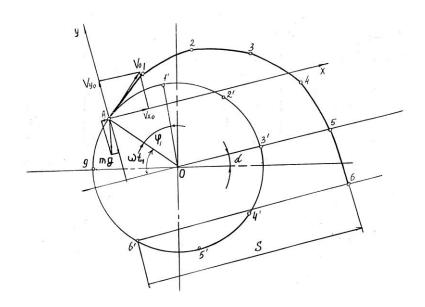


Рисунок 1 – Схема к определению фазы соударения.

Через точку, соответствующую положению колена вала в момент встречи (на рисунке 1 точка 6), проводят линию параллельную оси X, и на ней замерить расстояние Σ . В масштабе оно будет представлять дальность перемещения соломы S вдоль клавиши за одно подбрасывание.

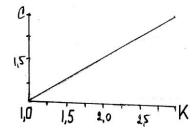


Рисунок 2 — График зависимости C = F(K)

Определяют среднюю скорость перемещения соломы по соломотрясу:

$$V_{cp} = S \frac{\omega}{2\pi} \tag{7}$$

$$V_{cp} =$$

Определяют толщину слоя соломы на соломотрясе по формуле

$$h = \frac{g(1-\delta)}{BV_{cp}\gamma} \tag{8}$$

h =

Определяют коэффициент сепарации по формуле

$$\mu = \mu_0 - \frac{h_0}{h} \tag{9}$$

$$\mu =$$

где $\mu_0 = 0.018$ при толщине слоя соломы $\eta_0 = 200$ мм.

Определяют длину соломотряса по формуле

$$L = \frac{1}{\mu} \ln \frac{(1-\varepsilon)100}{P} \tag{10}$$

$$L =$$

где P- процент допускаемых потерь зерна соломотряса (P=0,5%).

При расчётах L можно воспользоваться таблицей 3. При этом

$$X = \frac{(1 - \varepsilon)100}{P} \tag{11}$$

Таблица 3 - Значения логарифмов

X	ln X	X	ln X	X	ln X	X	lnX
220	3,0	26	3,26	32	3,47	38	3,64
21	3,04	27	3,30	33	3,50	39	3,67
22	3,09	28	3,33	34	3,53	40	3,69
23	3,14	29	3,37	35	3,56		
24	3,10	30	3,40	36	3,59		
25	3,22	31	3,44	37	3,61		

Выводы				

·	

Контрольные вопросы

- 1. Охарактеризуйте кинематику движения клавиш соломотрясов 1 и 2 групп.
- 2. Приведите выражения для определения координат точки клавиши в любой момент времени.
- 3. Нарисуйте систему сил, действующих на частицу, находящуюся на поверхности клавиши соломотряса.
 - 4. Обоснуйте условие отрыва частицы от клавиши.
- 5. Обоснуйте условие, при котором частица отрывается от клавиши и соударяется с продвижением вдоль клавиши.
- 6. Обоснуйте условие, при котором частица отрывается от клавиши и соударяется без продвижения вдоль клавиши.
- 7. Приведите и проанализируйте выражение фазы подбрасывания.
- 8. Обоснуйте условие, при котором частица не отрывается от клавиши.
- 9. Обоснуйте рациональную величину фазы соударения массы о клавишу.
- 10. Приведите и проанализируйте выражение фазы соударения массы о клавишу.
 - 11. Обоснуйте толщину слоя соломы на соломотрясе.
 - 12. Из каких условий обосновывается длина соломотряса?
- 13. Обоснуйте полную вероятность просеивания зерна сквозь слой соломы и отверстия клавиши.
- 14. Обоснуйте вероятность просеивания зерна сквозь отверстия клавиши.
- 15. Обоснуйте вероятность просеивания зерна за одно подбрасывание.
- 16. Обоснуйте вероятность просеивания зерна на одном метре длины соломотряса.
 - 17. Обоснуйте рациональную длину соломотряса.
- 18. Приведите выражение для определения координат положения оторвавшейся от клавиши массы в произвольный момент времени.
- 19. Проанализируйте зависимость коэффициента просеивания от толщины слоя соломы на соломотрясе.
- 20. Обоснуйте выражение для определения коэффициента просеивания.

Задача №1

Определите фазу отрыва массы от клавиши соломотряса, если радиус коленвала $r=0.05\,$ м, угол наклона клавиши $\alpha=30,$ окружная скорость поверхности клавиши в точке отрыва $U=1.0\,$ м/с.

Решение задачи №1

Задача №2

Определить случай, при котором ворох будет отрываться от клавишей, если частота вращения коленчатых валов 130 и 180 мин $^{-1}$, радиус кривошипа 0,05 м, угол наклона клавиши 20°.

Решение задачи №2

Список литературы

- 1. Кленин Н.И., Киселев С.Н. Сельскохозяйственные машины: учеб. для вузов. М.: КолосС, 2008.
- 2. Гаврилов К.Л. Тракторы и сельскохозяйственные машины иностранного и отечественного производства: устройство, диагностика и ремонт: учеб. пособие. Пермь: Звезда, 2010.
- 3. Халанский В.М., Горбачёв И.В. Сельскохозяйственные машины: учеб. для вузов. СПб.: ООО Квадро, 2014.
- 4. Сельскохозяйственные машины. Технологические расчеты в примерах и задачах: учеб. пособие для вузов. СПб.: Проспект Науки, 2011.
- 5. Кузнецов В.В. Сельскохозяйственные машины. Сборник задач и тестов: учебное пособие. Брянск: Изд-во Брянский ГАУ, 2016. 100 с.
- 6. Кузнецов В.В. Сельскохозяйственные машины. Сборник лекций по дисциплине: методическое пособие. Ч. 1. Брянск: Изд.-во Брянский ГАУ, 2018. 145 с.

Вариант	
Работу выполнил: студент группы	
D. C	
Работу принял: Дата	

ДЛЯ ЗАМЕТОК

Учебное издание

Владимир Васильевич Кузнецов

Определение основных параметров соломотряса

МЕТОДИЧЕСКОЕ ПОСОБИЕ И РАБОЧАЯ ТЕТРАДЬ

Редактор Лебедева Е.М.