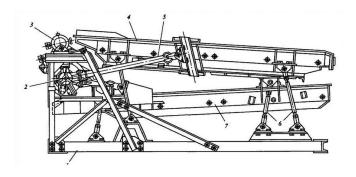
ФГБОУ ВО «Брянский государственный аграрный университет»


Инженерно-технологический институт

Кафедра технических систем в агробизнесе, природообустройстве и дорожном строительстве

Кузнецов В. В.

Графо-аналитическое определение скорости транспортирования почвы качающимся грохотом

Методическое пособие и рабочая тетрадь к практическому занятию по дисциплине «Сельскохозяйственные машины» для студентов ВУЗов очного и заочного обучения по направлению бакалавриат 35.03.06 «Агроинженерия», профиль образовательной программы «Технические системы в агробизнесе»

УДК 631.3 (076) ББК 40.722 К 89

Кузнецов, В. В. Графо-аналитическое определение скорости транспортирования почвы качающимся грохотом: методическое пособие и рабочая тетрадь / В. В. Кузнецов. - Брянск: Изд-во Брянский ГАУ, 2018. – 12 с.

Методическое пособие в форме рабочей тетради к практическому занятию «Графо-аналитическое определение скорости транспортирования почвы качающимся грохотом ы» по дисциплине «Сельскохозяйственные машины» для студентов ВУЗов очного и заочного обучения по направлению бакалавриат 35.03.06 «Агроинженерия», профиль образовательной программы «Технические системы в агробизнесе» помогает студенту получить практические навыки по компетенциям ПК-2, ПК-4, ПК-5, ПК-8 рабочего плана дисциплины.

Рецензент: к.т.н., доцент С. И. Будко

Рекомендовано к изданию методической комиссией инженерно-технологического института от 21.02.2018 года, протокол N27.

- © Кузнецов В.В., 2018
- © Брянская ГАУ, 2018

Графо-аналитическое определение скорости транспортирования почвы качающимся грохотом

Цель работы. Проанализировать исходные данные, приобрести практические навыки исследования взаимодействия почвы с качающимся грохотом, оценки качества технологического процесса. Освоить методы подготовки к профессиональной эксплуатации.

Теоретическая часть

Скорость транспортирования почвы качающимся грохотом определяется по формуле:

$$V = \frac{S}{T} \tag{1}$$

- где S расстояние между точкой подбрасывания почвы с поверхности грохота и точкой ее встречи с указанной поверхностью;
- Т время одного цикла (обычно равно времени полного оборота, кривошипа).

Следовательно, для определения, величины Ѕнеобходимо определить момент отрыва почвы от поверхности решета грохота и найти точку ее встречи с этой поверхностью.

Момент начала отрыва находится, исходя из следующих соображений. На тело, помещенное на поверхность решета грохота, действуют следующие силы (рис. 1, а):

- вес mg , который разлагается на силу нормального давления $N=\operatorname{mgcos}\alpha$ и скатывающую силу $\operatorname{mgsin}\alpha$;
- сила трения, направленная, как и скатывающая сила, вдоль поверхности решета;
- сила инерции $F_{u \mu} = m \cdot \gamma$, направленная параллельно шатуну.

Отрыв от поверхности грохота возможен, если проекция силы инерции на направление, перпендикулярное указанной поверхности, превысит силу нормального давления и будет проти-

воположна ей по направлению. То есть, обязательное условие начала отрыва (рис. 1, b).

$$F_{uH} \cdot \sin \beta \ge N \tag{2}$$

Если принять точку I (рис. 1, б) за начало отсчета, то отрыв почвы от грохота возможен во II квадранте, когда кривошип повернется на угол 180 - φ , а угол φ_0 определяется по формуле

$$\varphi_0 = \arccos\left[\frac{g \cdot \cos\alpha}{\omega^2 \cdot A \cdot \sin\beta}\right] \tag{3}$$

После отрыва почвы, движущейся в начальный момент под углом $\alpha+\beta$ к горизонту, она описывает траекторию в виде параболы и вновь встречается с поверхностью решета грохота. Близким к оптимальному следует считать режим работы, когда период полета частицы почвы близок или кратен периоду оборота кривошипа.

Практическая часть

Содержание работы. Построить траекторию движения почвы после отрыва ее от поверхности грохота, найти точки встречи с указанной поверхностью и скорость транспортирования. По результатам построений сопоставить режим работы с критическим, теоретически определив частоту вращения кривошипа $\omega_{\kappa p}$.

Исходные данные. Для выполнения работы необходимы следующие исходные данные: ω - угловая скорость кривошипа; A — длина кривошипа; β — угол, характеризующий подвеску решета грохота; α - угол наклона решета. Значения исходных данных по вариантам приведены в таблице 1.

Таблица 1 - Исходные данные по вариантам

No॒	ω,	A,	0	$oldsymbol{eta}^{ ext{o}}$	No	ω,	A,	0	$oldsymbol{eta}^{ ext{o}}$
Π/Π	c ⁻¹	MM	$lpha^{ m o}$	p	Π/Π	c ⁻¹	MM	$lpha^{ m o}$	p
1	40	33.5	10	22	37	51	29.0	12	24
2	41	33.0	10	22	38	52	26.0	12	24
3	42	32.5	10	22	39	53	26.5	12	24
4	43	32.0	10	22	40	54	26.5	12	24
5	44	32.0	10	22	41	55	26.0	12	24
6	45	32.5	10	22	42	56	24.0	12	24
7	46	34.0	10	22	43	57	23.0	12	24
8	47	32.5	10	22	44	58	23.0	12	24
9	48	30.0	10	22	45	59	23.5	12	24
10	49	30.5	10	22	46	60	21.5	12	24
11	50	29.0	10	22	47	67	23.0	12	24
12	51	26.0	10	22	48	63	22.5	12	24
13	52	26.5	10	22	49	63	22.0	12	24
14	53	26.5	10	22	50	64	22.0	12	24
15	54	26.0	10	22	51	66	22.0	12	24
16	55	24.0	10	22	52	67	21.5	12	24
17	56	24.0	10	22	53	40	31.5	12	25
18	57	23.0	10	22	54	41	32.0	12	25
19	58	23.5	10	22	55	42	32.5	12	25
_20	59	23.5	10	22	56	43	32.5	12	25
21	65	21.5	10	22	57	44	33.0	12	25
22	61	23.0	10	22	58	45	33.5	12	25
23	62	22.5	10	22	59	46	33.0	12	25
24	63	22.0	10	22	60	47	32.0	12	25
25	64	22.0	10	_22	61	48	31.5	12	25
26	65	21.5	10	22	62	49	32.0	12	25
27	38	33.5	12	24	63	50	28.5	12	25
28	39	33.0	12	24	64	51	27.5	12	25
29	41	320	12	24	65	52	28.5	12	25
30	43	32.0	12	24	66	53	28.0	12	25
31	44	32.0	12	24	67	54	28.5	12	25
32	46	32.5	12	24	68	55	26.0	10	25
33	47	34.0	12	24	69	56	23.5	10	25
34	48	32.5	12	24	70	57	24.0	10	25
35	49	30.0	12	24	71	58	22.0	10	25
36	50	30.5	12	24	72	59	22.0	10	25

Порядок выполнения работы. В верхнем правом углу формата координатной бумаги в масштабе I:I строят окружность

радиусом равным А. Через ее центр (точку О) под углом $\alpha + \beta$ к горизонту проводят условную линию шатуна произвольной длины (130...150 мм от точки O влево вниз) (рис. 1).

Из конца шатуна под углом α к горизонту проводят линию, обозначающую поверхность решета грохота длиной 100...140. мм (линия O-O). Точка пересечения линии шатуна с окружностью (точка M) будет началом отсчета при определении момента отрыва почвы от поверхности грохота.

Угол φ_0 определяют по формуле (3), а затем от линии шатуна, (точка M) откладывают по направлению вращения кривошипа угол 180 – φ .

 $\varphi_0 =$

Полученная точка I является точкой начала отрыва почвы от поверхности грохота. От этой точки радиусами разбивают окружность на 8 равных частей (точки I - 8).

Однако, точка I показывает только положение верхней головки шатуна в момент отрыва почвы от поверхности грохота. Нам же необходимо найти положение грохота, соответствующее моменту, когда верхняя головка шатуна находится в точке I на кривошипе. Для этого на поверхности грохота (ближе к его левому краю) выбирают произвольную точку B и считают, что в ней находится рассматриваемый элементарный объем почвы. Считают, что точка движется по прямой, параллельной линии шатуна, то есть под углом $\alpha + \beta$ к горизонту.

Для определения положения нижней головки шатуна и грохота (точки B) в момент отрыва почвы, из точки I опускают перпендикуляр на линию шатуна. Величина Od определяет расстояние, пройденное точкой B по траектории a-a. Откладывают ее от точки B вправо вверх по линии a-a. Через полученную таким образом точку \mathcal{J} ($B\mathcal{J} = Od$) проводят прямую, параллельную поверхности грохота (то есть под углом α к горизонту). Это и будет положение поверхности грохота в момент отрыва от нее почвы.

Далее помещают в точку $\mathcal I$ начало системы координат (ХДУ) направив ось X по поверхности грохота, а ось У перпендикулярно вверх от нее.

Для построения траектории движения рассчитывают координаты её точек, соответствующие моментам нахождения верхней головки шатуна в точках 2...9.

Расчёты заносят в таблицу 2.

Таблица 2 - Результаты расчётов

Порядковый № точки I (по обозначению на кри-	1	2	3	4	5	6	7	8	9
вошипе)									
Время с момента отры-									
ва от поверхности ре-									
шета									
$t_i = \pi(I-1)/4\omega, c$									
$X_i = \omega A \sin \varphi_0 \cos \beta \times t_1 -$									
$\frac{gt_i^2}{2}\sin\alpha, M$									
$Y_i = \omega A \sin \varphi_0 \sin \beta \times t_1 -$									
$\frac{gt_i^2}{2}\cos\alpha$, M									

Расчёты

По данным таблицы 2 в масштабе 1:1 в системе координат XDY строят траекторию движения частицы почвы после ее отрыва от поверхности грохота (рис.1, b), нумеруя точки I'...9'. Затем находят точку встречи почвы с поверхностью грохота. Ориентировочно она должна произойти в районе между 6'...9' точками. Далее строят положения решета грохота, соответствующие указанным точкам. В случае, изображенном на (рис.2, b), положение 9'' совпадает с осью X, При этом очевидно, что встреча почвы с решетом уже произошла, т.к. точка 9' траектории ее движения находится ниже поверхности решета.

Построим положение решета 8'' соответствующее положению верхней головки шатуна в точке 8 на кривошипе. Для этого из точки 8 опустим перпендикуляр на линию шатуна. По линии а-а отложим вниз отрезок BC-OC . Через точку C проведем под углом линию 8'', обозначающую положение поверхности решета, соответствующее точке 8 на кривошипе. Из схемы видно, что почва в этот момент находится выше поверхности решета (точка. 8' выше линии 8'').

Рисунок 1 – Схема к расчёту режимов работы грохота

Следовательно, встреча почвы с поверхностью решета грохота должна произойти где-то между точками 8 и 9.

Найдем это положение решета грохота, методом интерполяции. Для этого расстояние между линиями 8'' и 9'' разделим ровно пополам и проведем через эту точку под углом α линию m - m считая приближенно это положение решета грохота соответствующим моменту встречи α его поверхностью. В более точной интерполяции нет необходимости ввиду учебного характера задания.

Расстояние между точками пересечения линии m - m с линией а - а и траекторией движения почвы является искомой величиной пути одного подскока. Подставив величину S в формулу (1), находят скорость движения почвы по поверхности грохота. При этом

$$T = \frac{2\pi}{\omega} \tag{3}$$

Построения выполняют на листе координатной бумаги с приложением расчетов и анализа в виде дополнительной записки.

Содержание отчёта. Записать название работы, вариант, исходные данные, цель работы. Выполнить требуемые расчёты и построения. Сделать выводы.

Контрольные вопросы

- 1. По какой формуле определяется скорость транспортирования почвы качающимся грохотом?
- 2. Какие силы действуют на тело, помещенное на поверхность решета грохота?
- 3. При каком условии возможен отрыв движущейся по грохоту почвы от его поверхности?
- 4. Запишите формулу, определяющую момент отрыва движущейся по грохоту почвы от его поверхности.
- 5. Запишите формулы, описывающие траекторию движения частицы почвы после ее отрыва от поверхности грохота.
- 6. Какой режим работы грохота считается близким к оптимальному?
- 7. Запишите формулу для угла φ_0 поворота кривошипа, определяющего начало отрыва частицы от поверхности грохота.

Список литературы

- 1. Кленин Н.И., Киселев С.Н. Сельскохозяйственные машины: учеб. для вузов. М.: КолосС, 2008.
- 2. Гаврилов К.Л. Тракторы и сельскохозяйственные машины иностранного и отечественного производства: устройство, диагностика и ремонт: учеб. пособие. Пермь: Звезда, 2010.
- 3. Халанский В.М., Горбачёв И.В. Сельскохозяйственные машины: учеб. для вузов. СПб.: ООО Квадро, 2014.
- 4. Сельскохозяйственные машины. Технологические расчеты в примерах и задачах: учеб. пособие для вузов. СПб.: Проспект Науки, 2011.
- 5. Кузнецов В.В. Сельскохозяйственные машины. Сборник задач и тестов: учебное пособие. Брянск: Изд-во Брянский ГАУ, 2016. 100 с.
- 6. Кузнецов В.В. Сельскохозяйственные машины. Сборник лекций по дисциплине: методическое пособие. Ч. 1. Брянск: Изд.-во Брянский ГАУ, 2018. 145 с.

Вариант	
Работу выполнил: студент группы	
Работу принял:	
Лата	

Учебное издание

Владимир Васильевич Кузнецов

Графо-аналитическое определение скорости транспортирования почвы качающимся грохотом

МЕТОДИЧЕСКОЕ ПОСОБИЕ И РАБОЧАЯ ТЕТРАДЬ

Редактор Лебедева Е.М.